

CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

Decentralized Co-Optimization of Water and Energy Distribution Systems

Jesus A. Silva-Rodriguez

University of Houston

November 24th, 2025

Committee Members:

Dr. Xingpeng Li (Chair)

Dr. Kaushik Rajashekara

Dr. Hao Huang

Dr. Gino Lim

Dr. Lei Fan

Department of Electrical & Computer Engineering

Overview

- Chapter 1: Introduction
- Chapter 2: Micro Water-Energy Nexus (MWEN)
- Chapter 3: Centralized Network Operation of MWEN
- Chapter 4: Decentralized Networked Microgrid Energy Management
- Chapter 5: Decentralized Water-Energy Co-Optimization
- Chapter 6: Distribution-Level Water-Energy Nexus
- Chapter 7: Conclusions and Future Work

Department of Electrical & Computer Engineering

Introduction

Department of Electrical & Computer Engineering

Motivation

- Both water and electricity are crucial resources
 - Scarcity of one resource can greatly impact the other
 - A severe drought affected more than a third of the United States in 2012, limiting water availability that constrained the operation of some power plants and other energy production infrastructure [1]
 - Winter storm Uri in 2021 caused a loss in water pressure that impacted the power grid and backup generators, affecting primarily groundwater systems and wastewater treatment units [2]
- Water and energy management co-optimization can yield greater efficiency, reliability, and security [3]
 - Local power and water production and distribution
 - Independent operation from both main grid and water systems

^[1] E. Moniz "Ensuring the Resiliency of Our Future Water and Energy Systems." Energy.gov, June 2014, https://www.energy.gov/articles/ensuring-resiliency-our-future-water-and-energy-systems.

^[2] C. E. Haddock, "Winter Storm Uri Impacts to City of Houston Water and Wastewater Systems," Mar. 2021, https://www.houstontx.gov/govtrelations/2021lege/3.10.2021-Haddock-Uri-HUA-Statement.pdf.

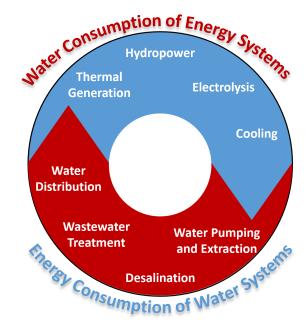
^[3] F. Moazeni, J. Khazaei, J. P. Pera Mendes, "Maximizing energy efficiency of islanded micro water-energy nexus using co-optimization of water demand and energy consumption," Applied Energy, vol. 266, 2020.

Energy and Water Management Similarities

Energy Management [1]	Water Management [2]	
Various Distributed Resources: Controllable generators (e.g., diesel and natural gas gens.), renewable energy sources (e.g., solar and wind power), energy storage systems (e.g., BES and HES)	Various Distributed Resources: Water treatment (e.g., wastewater, reservoir water, ground water, etc.), water desalination, rainwater, water storage tanks	
Energy Demand: Residential, commercial, industrial loads	Water Demand: Residential, agricultural, industrial, ecological uses	
Unit Commitment: Scheduling of generators and energy storage units	Unit Commitment: Scheduling of water treatment plants and water pumps	
Economic Dispatch: Controlling generating resources to achieve supply-demand balance. Minimize system operation costs	Economic Dispatch: Treating and dispatching sufficient water to match demand. Minimize water treatment and distribution costs.	

[1] C. A. Marino, M. Marufuzzaman, "A microgrid energy management system based on chance-constrained stochastic optimization and big data analytics," Computers & Industrial Engineering, vol. 143, 2020.

[2] K. Gnawali, K. H. Han, Z. W. Geem, K. S. Jun, and K. T. Yum, "Economic Dispatch Optimization of Multi-Water Resources: A Case Study of an Island in South Korea," Sustainability, vol. 11, no. 21, Oct. 2019.



Department of Electrical & Computer Engineering

Water-Energy Nexus

- Relationship and interdependencies of water and energy distribution [1]
 - Water used for electrical energy generation
 - Thermoelectric generators
 - Hydroelectric plants
 - Hydrogen Energy Storage (Electrolysis)
 - Electricity used for clean water production
 - Water treatment
 - Wastewater treatment, freshwater treatment, water desalination, etc.
 - Pumps/water distribution equipment
- Optimization of water and energy distribution
 - Interdependent simultaneous supply of potable water and electrical power [2]
 - Considers electrical power used for water related purposes
 - Considers water used for power related purposes

[1] G. Pereira, A. González and R. Ríos, "Systematic Literature Review of Water-Energy Nexus: An Overview of the field and analysis of the top 50 influential papers," 2020 IEEE Congreso Bienal de Argentina (ARGENCON), Resistencia, Argentina, pp. 1-8, 2020. [2] A. Panagopoulo, "Water-energy nexus: desalination technologies and renewable energy sources," Environmental Science Pollution Research, vol. 28, 2021.

CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

Research Gaps

Limited cross-utility integration

- Water and energy treated as loosely coupled
 - Often neglecting system interdependencies and detailed dynamics
- Full integration of different interdependencies between utilities
 - Water consumption of energy systems
 - Energy consumption of water systems

Operational complexities

- Comprehensive co-optimization modeling
 - Consider complex nonlinear and mixed-integer formulations for accurate system representations
- Advanced modeling and computation techniques needed

Ownership and governance

- Institutional separation of water and energy utilities
 - Consider systems independence and privacy requirements
- Need to achieve distributed optimization to accommodate separate management and ownership

CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

Research Roadmap

Micro Water-Energy Nexus Centralized Water-Energy Networks Decentralized
Network of
Microgrids

Decentralized
Water-Energy
CoOptimization

Distribution Level Water-Energy Nexus

Conclusions & Future Work

- MWEN model formulation
- MWEN operation and system implementation examples
- Cost-Benefit Analysis

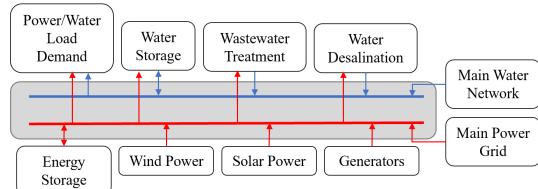
- Central node centralized networks of MGs
- Network of MWEN systems
- Proportional exchange algorithm
- Network operation benefit analysis

- ADMM for distributed optimization
- Objective-based approach to ADMM
- Decentralized optimization performance results

- Decentralization of Water-Energy Nexus
- Distributed optimization of MWEN via ADMM
- Computational benefits results
- Water and electricity distribution modeling
- Physical characteristics of power lines and water pipes
- Distribution-Level WEN model convexification
- Decentralized algorithm performance

Department of Electrical & Computer Engineering

Micro Water-Energy Nexus



Department of Electrical & Computer Engineering

MWEN Problem Description

- Small-scale water-energy management and distribution co-optimization
- Goal: To improve and provide combined cost reductions for small-scale water and energy distribution
- Model involves:
 - Energy and water resource management
 - Local generators and water treatment units
 - Renewable generation
 - Coupling with main grid and main water distribution system (WDS)
 - Battery energy storage and water storage tanks
 - Residential and commercial water and energy demand

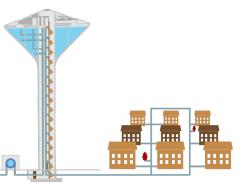
MWEN resource management system diagram

Department of Electrical & Computer Engineering

MWEN Optimization Model

- Day-ahead optimization
 - Mixed integer nonlinear programming (MINLP)
- Objective: Minimize total operation costs
 - Objective Function: $minimize\ f_{cost} = f_E + f_W$
 - Power Distribution Cost: $f_E = \Delta t \cdot \sum_{t \in T} \left\{ \sum_{g \in G} \left(C_g^{NL_G} u_{g,t}^G + C_g^{Op_G} P_{g,t}^G \right) + C_t^{grid} P_t^{grid} \right\}$
 - Energy costs and cost associated with running generators per hour
 - Water Distribution Cost: $f_W = \Delta t \cdot \sum_{t \in T} \{C^{Op_{WW}} W_t^{WW} + C^{Op_{WT}} W_t^{WT} + C_t^{main} + W_t^{main} + \}$
 - Water import cost and costs of running treatment plants per volume of water
 - Including operational expenses such as labor, chemicals, and maintenance costs [1], [2]
 - System constraints involve microgrid energy management (MEM) elements, and micro water management (MWM) elements

[1] A. W. Sekandari, "Cost Comparison Analysis of Wastewater Treatment Plants," IJSTE – International Journal of Science, Technology and Engineering, vol. 6, 2019. [2] Advisan, "The Cost of Desalination," [Online]. Available: https://prod-cm.advisian.com/en/global-perspectives/the-cost-of-desalination.


Department of Electrical & Computer Engineering

System Constraints

- MEM system constraints include:
 - Generator output limits
 - Main grid import limits
 - Energy storage limits
 - Charging/discharging
 - Charge level
 - Power Balance
 - All power input set to balance out combination of power demand and renewable generation

- MWM system constraints include:
 - Water treatment output flow rate limits
 - Wastewater and desalination units
 - Wastewater also features untreated wastewater reservoir capacity limits
 - Water treatment power consumption
 - Power consumed per output flow rate produced
 - Water storage system limits
 - Water fill up and release
 - Water storage level
 - "Water Balance"
 - Balance of water demand and combined flow rate produced by water resources

CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

Water-Energy Interdependence

- Power balance involves power consumption of MWM system
 - Power balance constraint: $\sum_{g \in G} P_{g,t}^G + \sum_{e \in S_E} \left[P_{e,t}^{ESd} P_{e,t}^{ESc} \right] + P_t^{grid} + P_t^{net}$, $(\forall t \in T)$
 - Net load: $P_t^{net} = P_t^L P_t^{WP} P_t^{SP} + P_t^{MWM}$, $(\forall t \in T)$
 - MWM power consumption: $P_t^{MWM} = P_t^{WW} + P_t^{WT} + P_{pump,t}^{WW} + P_{pump,t}^{WT} + \sum_{s \in S_W} P_{pump,s,t}^{ST}$, $(\forall t \in T)$

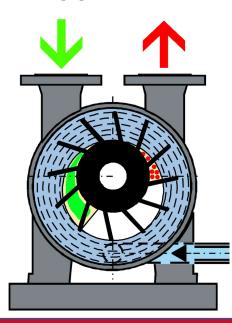
Power consumption of treatment units

Power consumption of output pumps of each water resource

- Wastewater: $W_t^{WW} = \gamma^{WW} P_t^{WW}$, $(t \in T)$
- Water Desalination: $W_t^{WT} = \gamma^{WT} P_t^{WT}$, $(t \in T)$
 - γ represents rate of amount of water treated per unit of energy consumed (e.g., m³/kWh)

Department of Electrical & Computer Engineering

Water Pumps Power Consumption


- Electric power consumption of water pumps can be represented with a quadratic relation as a function of water flow rate output
 - $P_{pump} = a_{pump}W^2 + b_{pump}W + c_{pump}$
 - a, b, and c coefficients are obtained based on properties of the water pumps
 - Relationship is known as "pump curve" and data points are provided by manufacturer's datasheets [1]
- For every water source

•
$$P_{pump,t}^{WW} = a_{pump}^{WW} (W_t^{WW})^2 + b_{pump}^{WW} (W_t^{WW}) + c_{pump}^{WW} u_t^{WW}$$
, $(\forall t \in T)$

•
$$P_{pump,t}^{WT} = a_{pump}^{WT} (W_t^{WT})^2 + b_{pump}^{WT} (W_t^{WT}) + c_{pump}^{WD} u_t^{WT}$$
, $(\forall t \in T)$

•
$$P_{pump,s,t}^{ST} = a_{pump}^{ST} (W_{s,t}^{STc})^2 + b_{pump}^{ST} (W_{s,t}^{STc}) + c_{pump}^{ST} u_{s,t}^{STc}$$
, $(\forall s \in S_W, t \in T)$

- Water storage uses a pump to fill up tanks, and a simple valve to release stored water
- Release occurs with normal pressure due to water weight and gravitational force

[1] B. Ulanicki, J. Kahler, and B. Coulbeck, "Modeling the efficiency and power characteristics of a pump group," Journal of Water Resources Planning and Management, vol. 134, no. 1, pp. 88-93, 2008.

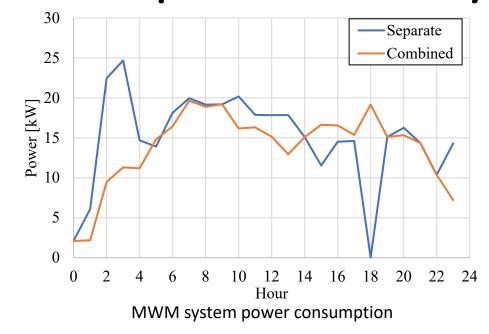
Department of Electrical & Computer Engineering

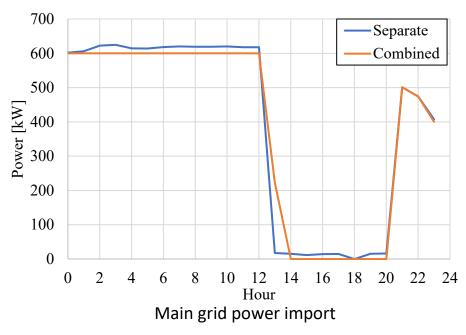
Separate and Combined Operations Comparison

- Benchmark case: separate operation of microgrid energy management (MEM) and micro water management (MWM) systems
 - MWM meets its water demand using power from main grid
 - MWM operation cost function: $f_W = \Delta t \cdot \sum_{t \in T} \left\{ C^{Op_{WW}} W_t^{WW} + C^{Op_{WD}} W_t^{WD} + C_t^{main+} W_t^{main+} + C_t^{grid+} \left(P_t^{WW} + P_t^{WT} + P_{pump,t}^{WW} + P_{pump,t}^{WT} + \sum_{s \in S_W} P_{pump,s,t}^{ST} \right) \right\}$
 - Variable price is known by MWM operator

Water treatment and pumps power consumption

- MEM meets only residential and commercial power demand
 - MEM Power Balance: $\sum_{g \in G} P_{g,t}^G + \sum_{e \in S_E} \left[P_{e,t}^{ESd} P_{e,t}^{ESc} \right] + P_t^{grid+} = P_t^L P_t^{WP} P_t^{SP}$, $(\forall t \in T)$
 - Excluding MWM power consumption
- Water-Energy Co-Optimization case: implements MWEN system
 - Energy costs of MWM power consumption incur by MEM operator
- Comparison will show combined operation cost reductions




CULLEN COLLEGE of ENGINEERING

Resource Operation Analysis

- Access to local variety of energy resources in the microgrid allows for a more strategic economic dispatch
 - Water management power consumption profile changes for a more strategic use of energy sources
 - Main grid import during peak hours is reduced

CULLEN COLLEGE of ENGINEERING

Cost Benefit Analysis

Operation costs for separate MEM and MWM operations, as well as combined MWEN operation

	Separate Operation	Combined MWEN Operation	Difference
MEM Op. Cost	\$298.13	\$312.16	\$14.03 (4.60%)
MWM Op. Cost	\$181.86	\$160.08	\$21.78 (12.74%)
TOTAL	\$479.99	\$472.24	\$7.75 (1.63%)

- Overall combined operation cost reduction of 1.6%
 - Microgrid energy management (MEM) operation costs went up by 4.6%, but micro water management (MWM) operation costs went down by 12.7%
 - MWM power consumption cost in separate case:
 - $\Delta t \cdot \sum_{t \in T} C_t^{grid} + P_t^{MWM} = 19.98
 - MEM cost increase represents the <u>new energy costs</u> of MWM power consumption in combined case
 - I.e., MWM Power consumption cost: \$19.98 \rightarrow \$14.03
 - Energy costs of MWM power consumption reduced by 29.8%

Department of Electrical & Computer Engineering

Chapter 2: Summary

- The proposed Micro Water-Energy Nexus (MWEN) operation provides important economic benefits
 - Water distribution costs related to energy consumption are reduced by 30%

Research Contribution:

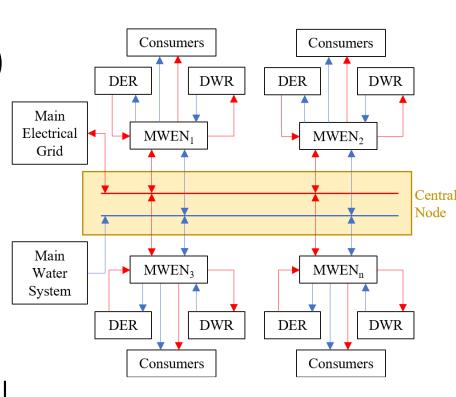
- Expanded <u>cross-utility integration</u> of a variety of water-energy interdependencies
 - Energy intensity of different treatment processes
 - Wastewater
 - Desalination
 - Power consumption of water pumps

Publications:

• J. Silva-Rodriguez and X. Li, "Water-Energy Co-Optimization for Community-Scale Microgrids," 2021 North American Power Symposium (NAPS), College Station, TX, USA, 2021, pp. 1-6, doi: 10.1109/NAPS52732.2021.9654518.

Department of Electrical & Computer Engineering

Centralized Network Operation of Micro Water-Energy Nexus



Department of Electrical & Computer Engineering

Network of MWEN Systems

- Networked Micro Water-Energy Nexus (Net-MWEN)
 - Multiple individual nearby systems interconnected
 - Strategic water and energy distribution
 - Collaborative resource exchange to collectively minimize operation costs
- Centralized Operation
 - All resources are scheduled by central management system for optimal sharing among network participants
 - Information from all participants communicated through central system
 - Central Node Topology

Department of Electrical & Computer Engineering

Net-MWEN Co-Optimization

- Water-Energy Co-Optimization across multiple networked MWEN systems
 - minimize $\sum_{m \in M} f_{cost,m} = \sum_{m \in M} \left[f_{E,m} + f_{W,m} \right]$
- Both water and energy distribution follow a central node topology
 - All power and water flows through a central bus and junction, respectively
- System assumptions/considerations:
 - Trading with main grid and main WDS is less beneficial than trading within the network [1]
 - Energy pricing: $C_t^{grid-} \le C_t^{Np} \le C_t^{grid+}$
 - Water pricing: $C_t^{Nw} \leq C_t^{main+}$
 - No water export due to constant water price

[1] W. Zhang and Y. Xu, "Distributed Optimal Control for Multiple Microgrids in a Distribution Network," IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 3765-3779, July 2019, DOI: 10.1109/TSG.2018.2834921

CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

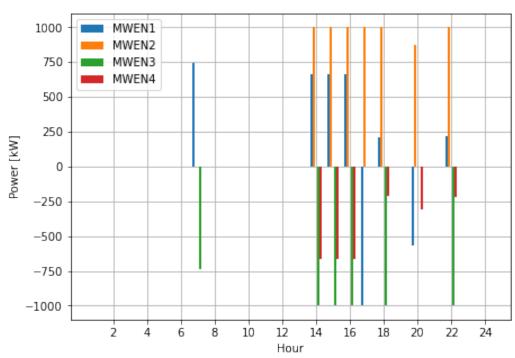
附

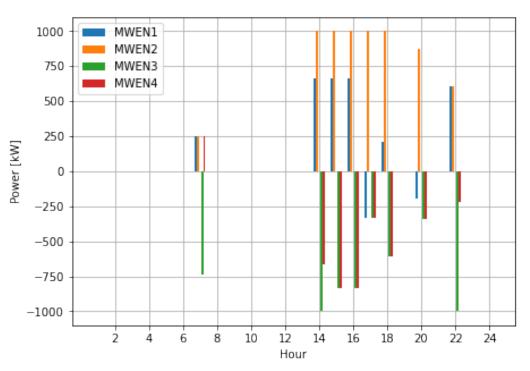
Proportional Exchange

- Network optimization is executed as a single entity system
 - Minimizing combined cost of all local MWEN systems as a whole
 - Individual MWEN exchange cost becomes irrelevant
 - May result in solutions that do not benefit all MWEN equally
 - Proportional adjustment of power and water exchanges among MWEN is needed
 - Fair economic benefits to all participants must be achieved
 - Overall Net-MWEN minimum cost solution must be preserved
- Proportional Exchange Algorithm (PEA)
 - Post-optimization processing balancing power and water exchanges based on individual supply and demand needs

```
Algorithm 1: PEA for power exchange in networks of MWENs.
       Solve MWEN optimization and obtain power exchanges P_{m.n.t}^{N+}
        and P_{m,n,t}^{N-}, and the net exchanges of each microgrid P_{m,t}^{E}.
        Allocate space for new variables P_{m,t}^{E+} and P_{m,t}^{E-}
            For m in M
               If p_{m,t}^{N+} = 1
                   Set P_{m,t}^{E+} = |P_{m,t}^{E}| and P_{m,t}^{E-} = 0
                   Set P_{m,t}^{E+} = 0 and P_{m,t}^{E-} = |P_{m,t}^{E}|
           For m in M
               If p_{m,t}^{N+} = 1
                   If \sum_{m \in M} P_{m,t}^{E+} > \sum_{m \in M} P_{m,t}^{E-}
12.
                       For n in M(m \neq n)
                           P_{m,n,t}^{N+} = \frac{P_{m,t}^{E+}}{\sum_{m \in M} P_{m,t}^{E+}} \cdot P_{n,t}^{E-}
                        end For
16.
                   Else
                       For n in M(m \neq n)
17.
                           P_{m,n,t}^{N+} = \frac{P_{m,t}^{E+}}{\sum_{m \in M} P_{m,t}^{E-}} \cdot P_{n,t}^{E-}
18.
                   Set P_{m,t}^{grid+}=P_{m,t}^{E+}-\sum_{n\in M,n\neq m}P_{m,n,t}^{N+} and P_{m,t}^{grid-}=0
                   If \sum_{m \in M} P_{m,t}^{E+} < \sum_{m \in M} P_{m,t}^{E-}
                      For n in M(m \neq n)
23.
                                                                            *Similar for water
24.
                                                                            exchange
                        end For
26.
                       For n in M(m \neq n)
27.
                          P_{m,n,t}^{N-} = \frac{P_{m,t}^{E-}}{\sum_{m \in M} P_{m,t}^{E+}} \cdot P_{n,t}^{E+}
29.
                    Set P_{m,t}^{grid-} = P_{m,t}^{E-} - \sum_{n \in M, n \neq m} P_{m,n,t}^{N-} and P_{m,t}^{grid+} = 0

    end For
```

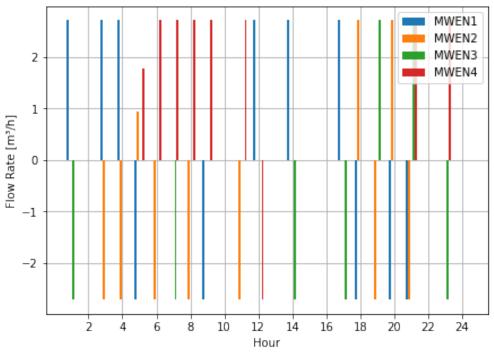


PEA Analysis Results

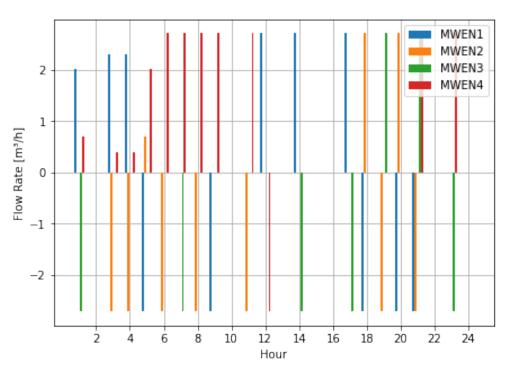
 Exchanges of electric power among MWEN systems are more balanced when the proposed proportional exchange algorithm (PEA) is introduced

Network Power Exchanges Without PEA

Network Power Exchanges With PEA



Department of Electrical & Computer Engineering



PEA Analysis Results

- Similar results for water exchange among MWEN systems
 - More balanced exchange among participants

Network Water Exchanges Without PEA

Network Water Exchanges With PEA

Department of Electrical & Computer Engineering

Economic Benefits Results

- There is substantial operation costs reductions for each MWEN system
 - An overall combined reduction of 5.4% is achieved

MWEN	Separate MWEN Cost	Combined NetMWEN Cost	% Difference	
1	\$406.43	\$396.34	2.48%	
2 \$1371.85		\$1318.83	3.86%	
3	\$155.55	\$120.03	22.84%	
4 \$-78.44		\$-80.02	2.01%	
TOTAL	\$1855.40	\$1755.18	5.40%	

UNIVERSITY of HOUSTON CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

Chapter 3: Summary

- A combined operation cost reduction is achieved among all participants compared to their separate operation
- The implemented proportional exchange algorithm (PEA) ensures a fair economic benefit balance based on individual system import/export needs when main grid and water network are a present

Research Contributions:

- <u>Cross-utility integration</u> across multiple localities
- Network-level <u>operational complexity</u> considering individual economic benefits

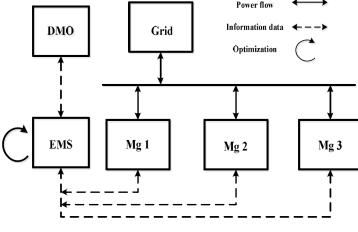
Publications:

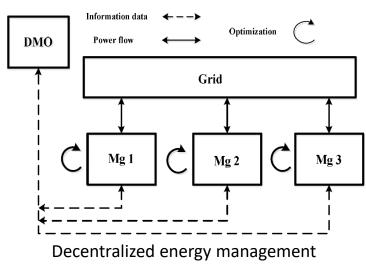
• J. Silva-Rodriguez and X. Li, "Centralized Networked Micro Water-Energy Nexus with Proportional Exchange Among Participants," 2022 North American Power Symposium (NAPS), Salt Lake City, UT, USA, 2022, pp. 1-6, doi: 10.1109/NAPS56150.2022.10012160.

Department of Electrical & Computer Engineering

Decentralized Networked Microgrid Energy Management

CULLEN COLLEGE of ENGINEERING


Department of Electrical & Computer Engineering


Centralized vs. Decentralized Network Operation

- Centralized energy management
 - All relevant information of each microgrid at the disposal of a single energy management system [1]
 - Significant investment to implement control center [2]
 - Privacy concerns for network participants [2]
- Decentralized energy management
 - Each MG schedules itself separately with minimal information sharing with other MGs [1]
 - Robustness against communication failures [2]
 - Privacy protection of local MG information [2]
- Fully distributed optimization method needed
 - Alternating Direction Method of Multipliers (ADMM)

[1] F. Khavari, A. Badri, A. Zangeneh and M. Shafiekhani, "A comparison of centralized and decentralized energy-management models of multi-microgrid systems," 2017 Smart Grid Conference (SGC), Tehran, Iran, 2017, pp. 1-6.
[2] C. Feng, F. Wen, et al., "Decentralized Energy Management of Networked Microgrid Based on Alternating-Direction Multiplier Method," Energies, vol. 11, 2018.

Centralized energy management

Department of Electrical & Computer Engineering

29

Alternating Direction Method of Multipliers (ADMM)

- ADMM is often applied to solve problems where the function optimization can be carried out locally, and then coordinated globally via constraints
 - For example: interconnection of microgrids into a distribution network to solve a decentralized energy-management model
- Network decomposition for ADMM implementation is possible for problems of the form [1]:
 - $minimize\ f(x) = \sum_{i \in N} f_i(x_i)$ Sum of local objective functions $subject\ to\ \sum_{i \in N} A_i x_i = b$ Global constraint
- Then the problem is relaxed with an augmented Lagrangian [1]:

•
$$L(x,y) = \sum_{i \in N} f_i(x) + \sum_{i \in N} \lambda^T A_i x_i - \lambda^T b + \frac{\rho}{2} \left\| \sum_{i \in N} A_i x_i - b \right\|_2^2$$

Lagrange Multiplier

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization and statistical learning via the alternating direction method of multipliers," Found. Trends Mach. Learn., vol. 3, no. 1, pp. 10–12, 2011.

Department of Electrical & Computer Engineering

Network of Microgrids Optimization Model

- Optimization model for centralized operation
- Objective function: $minimize \sum_{m \in M} f_{cost,m} \longrightarrow Sum of local objective functions$

•
$$f_{cost,m} = \sum_{t \in T} \Delta t \left\{ \sum_{g \in G} \left[\left(C_{m,t}^{NL_G} u_{m,t}^G + C_m^{Op_G} P_{m,t}^G \right) \right] + C_t^{grid} P_{m,t}^{grid} - C_t^{grid} P_{m,t}^{grid} + C_t^{Np} P_{m,n,t}^{Np} \right\}$$

- Global Constraint: network power exchanges
 - $P_{m,n,t}^N + P_{n,m,t}^N = 0$, $(\forall m, n \in M, n \neq m, t \in T)$

microgrid *m* and microgrid *n*.

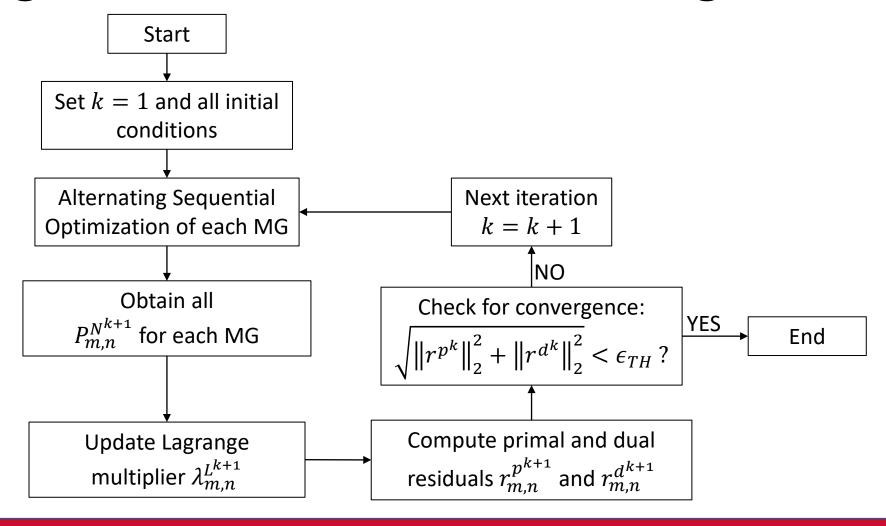
Positive quantity: power import.

Negative quantity: power export.

Power Exchanges between

- The import of microgrid *m* coming from *n* must be equal in magnitude to the export of *n* going to *m*
- Augmented Lagrangian

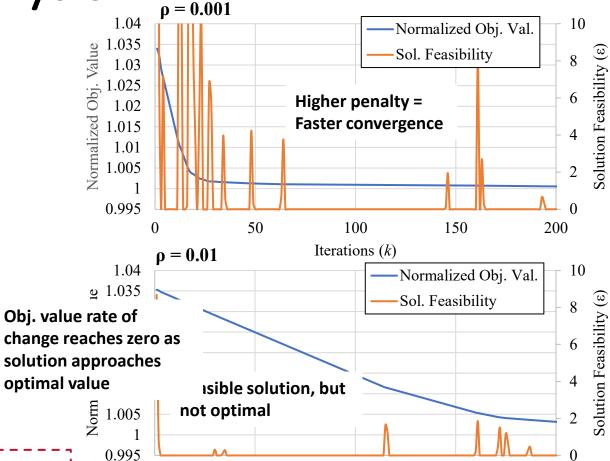
•
$$L_{\rho} = \sum_{m \in M} f_{cost,m} + \sum_{m \in M} \sum_{t \in T} \sum_{n \in N, n \neq m} \left[\lambda_{m,n,t}^{L} \left(P_{m,n,t}^{N} + P_{n,m,t}^{N} \right) + \frac{\rho}{2} \left(P_{m,n,t}^{N} + P_{n,m,t}^{N} \right)^{2} \right]$$



CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

ADMM Algorithm for Network of Microgrids


CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

ADMM Convergence Analysis

100

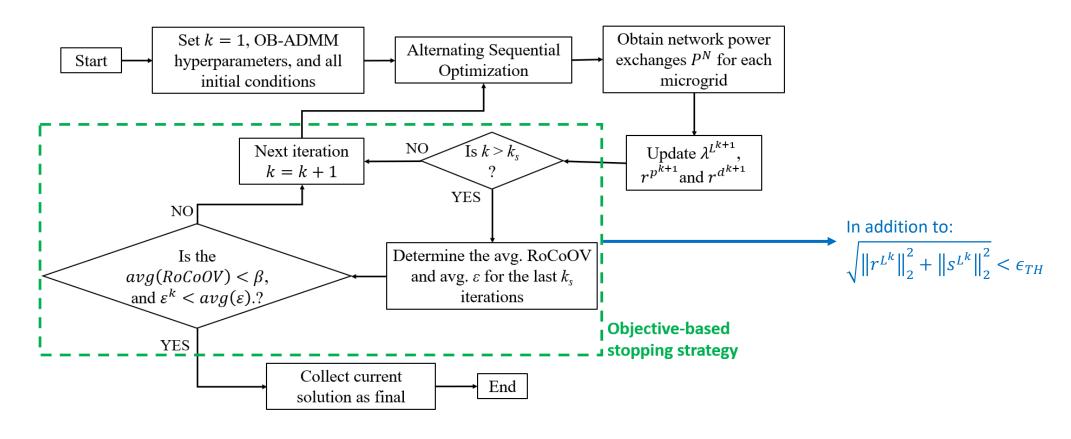
Iterations (k)

150

50

*A combination of solution feasibility and global objective value must be considered to determine convergence

200



CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

Objective-Based Approach

 β : Average rate of change of the objective value (RoCoOV) threshold.

Eth: Feasibility metric threshold for single-node microgrid ADMM formulation.

CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

34

Standard ADMM vs. OB-ADMM

- Objective-based ADMM (OB-ADMM) introduces two new hyperparameters
 - k_s : Iteration offset
 - Number of iterations through which avg. solution feasibility and obj. value rate of change is analyzed
 - β : Obj. value rate of change threshold
 - Minimum rate of change of objective value in the last k_s iterations
 - Optimality increases with higher k_s and lower β , at the expense of taking more iterations
 - Higher guarantee of optimality than standard ADMM

Results for a penalty $\rho = 0.001$ and $\varepsilon_{th} = 0.01$

Standard ADMM results

Iterations (k)	% Difference from Optimal Obj. Value	
6	2.290 %	

OB-ADMM results

Iteration Offset (k _s)	Avg. Obj. Value Change Threshold (β)	Iterations (k)	% Difference from Optimal Obj. Value
50	0.001	407	0.000 %
50	0.01	374	0.148 %
50	0.1	74	0.103 %
25	0.001	385	0.000 %
25	0.01	305	0.014 %
25	0.1	52	0.121 %

CULLEN COLLEGE of ENGINEERINGDepartment of Electrical & Computer Engineering

Importance of Initial Values for ADMM

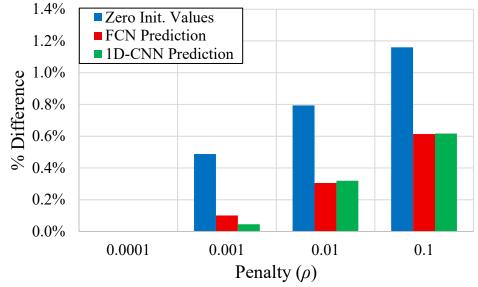
- Premise: Closer initial values are to the actual solution may yield higher optimality
 - However, in a real situation, the global optimal solution for the network is not known
 - Power exchange must be estimated as close as possible and used as initial values for the ADMM algorithm

- Improved optimality
- Lower number of iteration when using OB-ADMM

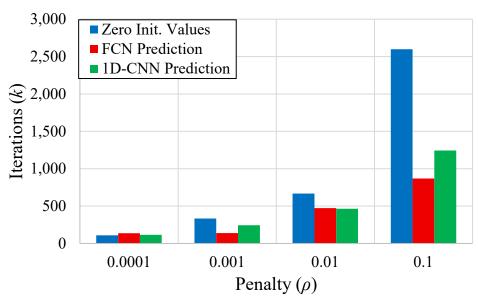
	Offset	Standard ADMM		OB-ADMM	
Penalty (ρ)	percentage (%)	Iterations (k)	Obj Val % Difference	Iterations (k)	Obj Val % Difference
	Zero init. values	25	1.2417	283	0.4876
0.001	30	19	0.0999	79	0.0036
	20	18	0.0133	45	0.0026
	10	27	0.0019	46	0.0004
	Zero init. values	4	29.878	619	0.8110
0.01	30	6	5.0553	98	0.1198
	20	17	0.6957	73	0.0792
	10	20	0.0603	49	0.0371
0.1	Zero init. values	13	32.196	2601	1.1709
	30	3	7.0544	651	0.1367
	20	3	4.3536	435	0.0934
	10	5	2.0364	220	0.0485

CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering



36


ADMM ML-Assisted Model Evaluation

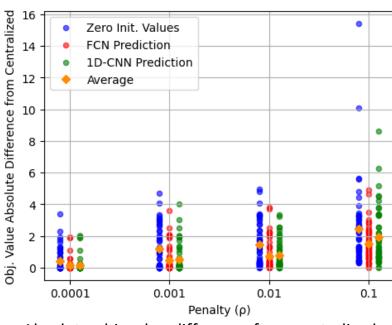
- Using a fully connected network (FCN) and a convolutional neural network (CNN)
 - Models trained with 4,000 sample cases of different MG net load and grid prices
 - 10% of cases for testing and 10% for validation
 - 50 additional evaluation cases

Model Performance

Final optimality as % difference from centralized benchmark

Number of iterations taken to achieve solution.

Department of Electrical & Computer Engineering



ML-Assisted Method Robustness Analysis

Average % improvement of obj. value and iterations for each ML model using OB-ADMM

Penalty (ρ)	FCN		1D-CNN	
	Obj. Value	Iterations	Obj. Value	Iterations
0.0001	66.748%	14.230%	58.469%	-2.145%
0.001	59.420%	7.977%	55.566%	9.784%
0.01	49.340%	-0.906%	45.523%	0.814%
0.1	39.546%	36.953%	21.617%	54.449%

- Substantial optimality improvement compared to simply using zero initial values
- Number of iterations improves as well for most penalty selections
- OB-ADMM + ML initial value predictions increases final optimality and robustness towards penalty value selection

Absolute obj. value difference from centralized benchmark for the 50 additional test cases

CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

Chapter 4: Summary

- Decentralized approach achieves privacy preservation for MG network participants
 - Only communicate power exchange within the network
- Objective-based ADMM provides higher guarantee of global optimal solution
 - Coupled with initial value predictions via machine learning (ML), final solution optimality as well as algorithm robustness can be further improved

Research Contributions:

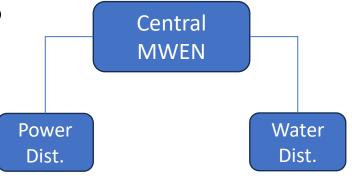
- Decentralized approach preserves autonomy and privacy needed for separate <u>ownership and</u> governance of each utility
- Operational complexity is advanced by enhancing ADMM with objective-based and ML approaches

Publications:

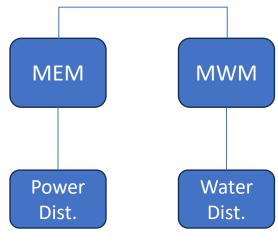
- Jesus Silva-Rodriguez, Xingpeng Li, Gino Lim, "Privacy-Preserving Networked Microgrid Energy Management via Objective-Based ADMM," Electric Power Systems Research (PSSC Special Issue), 2026, [Under Review].
- Jesus Silva-Rodriguez and Xingpeng Li, "Decentralized Operations of Multi-Microgrid Systems: ML-Enhanced ADMM for Improved Optimality," Applied Energy, 2026, [Under Review].

Department of Electrical & Computer Engineering

Decentralized Water-Energy Co-Optimization


CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering



Decentralized Water-Energy Operations

- Current water and electrical systems do not share control and operations
 - Water and electrical utilities are owned and operated separately
 - A centralized operation would require both systems to be under a single management system
- A decentralized micro water-energy nexus (MWEN) would be a more realistic application
 - Both systems may retain their autonomy
 - Microgrid energy management (MEM)
 - Micro water management (MWM)

Centralized Management

Decentralized Management

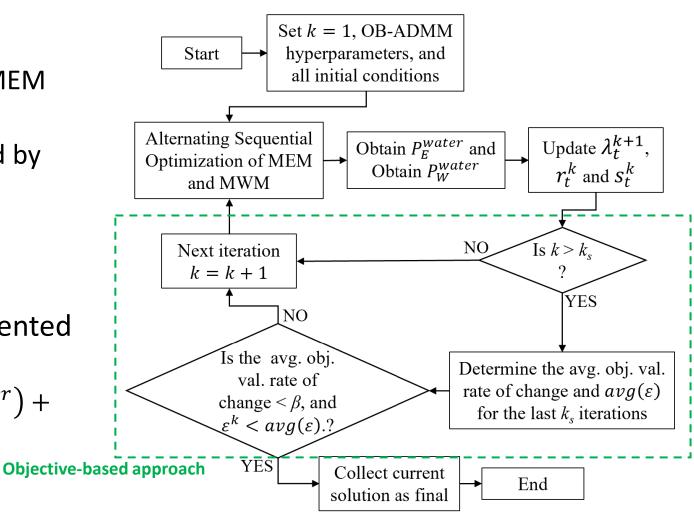
40

CULLEN COLLEGE of ENGINEERING

ADMM for Decentralized MWEN

- Network decomposition for ADMM is possible in problems of the form:
 - minimize $f(x) = \sum_{i \in N} f_i(x_i)$ subject to $\sum_{i \in N} A_i x_i = b$
 - Two systems (MEM and MWM): N=2
 - $f_1 = f_E$ and $f_2 = f_W$
 - $f_E = \Delta t \cdot \sum_{t \in T} \left\{ \sum_{g \in G} \left(C_g^{NL_G} u_{g,t}^G + C_g^{Op_G} P_{g,t}^G \right) + C_t^{grid} P_t^{grid} \right\}$
 - $f_W = \Delta t \cdot \sum_{t \in T} \{ C^{Op_{WW}} W_t^{WW} + C^{Op_{WT}} W_t^{WT} + C_t^{main} + W_t^{main} + \}$
 - Power balance constraint: $\sum_{g \in G} P_{g,t}^G + \sum_{e \in S_E} \left[P_{e,t}^{ESd} P_{e,t}^{ESc} \right] + P_t^{grid} + P_t^{L} P_t^{WP} P_t^{SP} + P_t^{MWM}$ (\$\forall t \in T)
 - MWM power consumption: $P_t^{MWM} = P_t^{WW} + P_t^{WT} + P_{pump,t}^{WW} + P_{pump,t}^{WT} + \sum_{s \in S_W} P_{pump,s,t}^{ST}$, $(\forall t \in T)$

Global variable


CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

ADMM for Decentralized MWEN

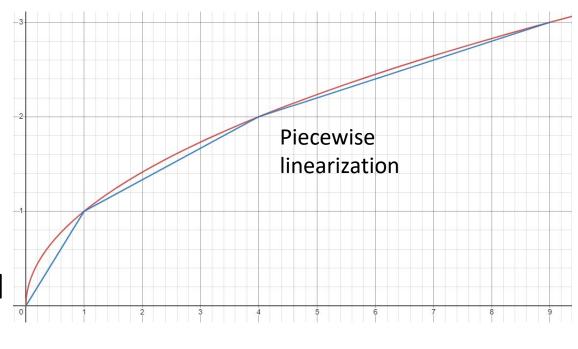
- Variable Duplication
 - MWM power consumption assumed by MEM operator: $P_{E,t}^{MWM}$
 - MWM power consumption as determined by MWM operator itself: $P_{W,t}^{MWM}$
- Global Constraint (i.e., $\sum_{i \in N} A_i x_i = b$)
 - $\bullet \ P_{E,t}^{MWM} P_{W,t}^{MWM} = 0$
 - Relaxing constraint and forming augmented Lagrangian for ADMM algorithm:
 - $L_{\rho} = f_E + f_W + \sum_{t \in T} \lambda_t (P_{E,t}^{water} P_{W,t}^{water}) + \frac{\rho}{2} \sum_{t \in T} (P_{E,t}^{water} P_{W,t}^{water})^2$

Department of Electrical & Computer Engineering

Pump Power Constraints Linearization

• ADMM is a simple but powerful algorithm well suited for distributed convex

optimization [1]


- MWEN Co-Optimization model is not convex
 - Water pump's power consumption equality constraints are non-affine functions [2]

•
$$P_{pump} = aW^2 + bW + c$$

- Equation must be convexified
- Piecewise Linearization
 - Linearization via heuristics least-squares method [3]
 - Fitting multiple linear functions to input data, creating a piecewise linear fit

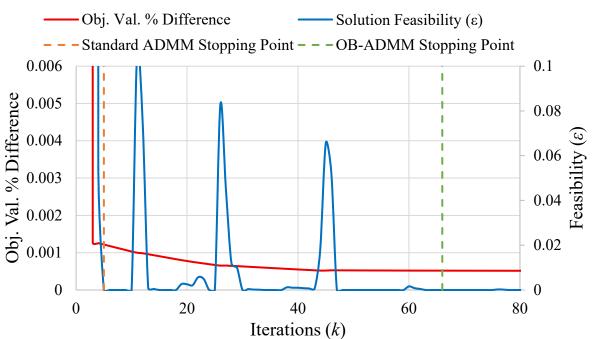
•
$$P_{pump} \in F = \{aW + b\}^{\widehat{v}}$$

• \hat{v} : number of linear functions of the piecewise set F

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, "Distributed optimization and statistical learning via the alternating direction method of multipliers," *Found. Trends Mach. Learn.*, vol. 3, no. 1, pp. 1–24, Jan. 2011.

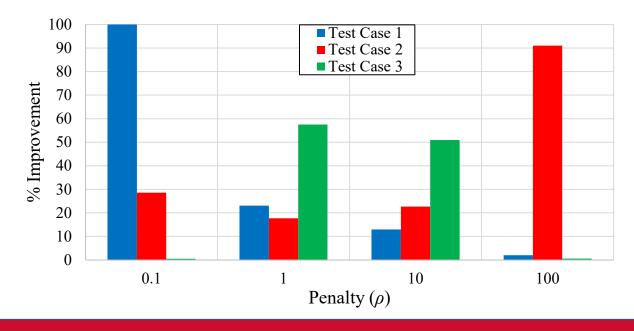
[2] S. Boyd, L. Vandenberghe, "Convex Optimization," Cambridge University Press, 7th Edition, pp. 136-138, 2009.

[3] A. Magnani and S. P. Boyd, "Convex piecewise-linear fitting," Optimize Eng., vol. 10, no. 1, pp. 1–17, 2009.



Department of Electrical & Computer Engineering

Standard ADMM vs. OB-ADMM Approach


• $\varepsilon_{th} = 0.001, \beta = 0.001, k_s = 25$

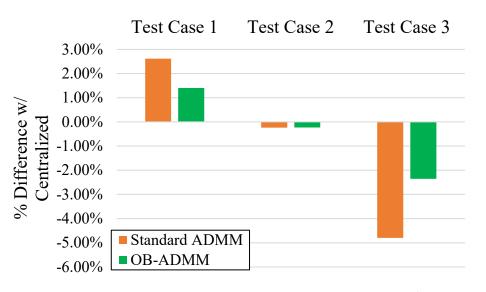
Solution optimality and feasibility for MWEN via standard ADMM and OB-ADMM with $\rho = 1$.

Results for MWEN standard and objective-based ADMM

Penalty ρ	Standard ADMM		OB-ADMM	
	% Difference w/ Centralized	Iterations (k)	% Difference w/ Centralized	Iterations (k)
0.1	0.05%	5	0.05%	66
1	0.12%	5	0.05%	66
10	0.14%	5	0.07%	253
100	0.14%	5	0.14%	28

CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering



Test Cases Results

- OB-ADMM is used to solve three different test cases
 - Test Case 1: 70 residential units and 3 commercial units, grid-connected
 - Test Case 2: 100 residential units and 4 commercial units, grid-connected
 - Test Case 3: 60 residential units and 2 commercial units, isolated

Objective value deviation from centralized model result for each ADMM approach.

Micro water management net energy consumption deviation from centralized model result for each ADMM approach.

CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

Chapter 5: Summary

- The proposed decentralized model is able to obtain a global optimal solution
 - Both operation cost and MWM energy consumption converge to the same quantities obtained by the centralized model
- Implementing OB-ADMM yielded optimality and convergence robustness compared to standard ADMM for MWEN problem

Research Contributions:

- Micro Water-Energy Nexus formulated for full system privacy and independent operation to maintain separate <u>ownership and governance</u> between water and energy systems
- Piecewise linearization of pumps power consumption addresses <u>operational complexities</u> of nonconvex formulation

Publications:

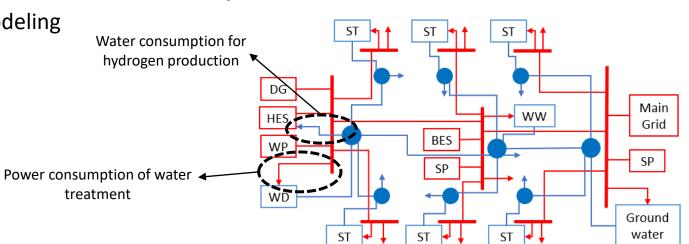
J. Silva-Rodriguez and X. Li, "Decentralized micro water-energy co-optimization for small communities," *Electric Power Systems Research*, vol. 234, 2024, doi: 10.1016/j.epsr.2024.110611.

Department of Electrical & Computer Engineering

Distribution-Level Water-Energy Nexus

CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering


Main Water Network

Main Power

Grid

Micro Water-Energy Co-Optimization

- Water-Energy Nexus Distribution Network Modeling
 - Community-Scale: single-node models with small-scale distributed resources
 - Distribution-Level: multi-node interconnected system
 - Requires physical network modeling
 - Power lines
 - Power flow
 - Thermal limits
 - Voltage limits
 - Water pipes
 - Water pipe flow
 - Water flow limits
 - Pressure limits

Power/Water

Load

Demand

Energy

Storage

Water

Storage

Wind Power

Wastewater

Treatment

Solar Power

Water

Desalination

Generators

- Modeling of additional interdependencies between distribution systems
 - Water demand of electricity resources
 - Power demand of water resources

CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

Distribution System Power Flow (DistFlow) [1]

- Power flow for radial distribution networks [1]
- Second-order cone relaxation (SOCR) [2]

•
$$\sum_{i \in N_u(j)} \left[P_{ij,t}^l - \left(I_{ij,t} \right)^2 R_{ij} \right] = \sum_{i \in N_d(j)} \left[P_{ji}^l \right] + P_j^{load} - P_j^{gen}$$
, $\forall j \in N, t \in T$

•
$$\sum_{i \in N_u(j)} \left[Q_{ij,t}^l - \left(I_{ij,t} \right)^2 X_{ij} \right] = \sum_{i \in N_d(j)} \left[Q_{ji}^l \right] + Q_j^{load} - Q_j^{gen}$$
, $\forall j \in N, t \in T$

•
$$(\overline{V}_{j,t})^2 = (\overline{V}_{i,t})^2 - 2(R_{ij}P_{ij,t}^l + X_{ij}Q_{ij,t}^l) + [(R_{ij})^2 + (X_{ij})^2](I_{ij,t})^2$$
, $\forall i, j \in N, t \in T$

•
$$(P_{ij,t}^l)^2 + (Q_{ij,t}^l)^2 \stackrel{\leq}{=} (I_{ij,t})^2 (\overline{V}_{i,t})^2$$
, $\forall i, j \in N, t \in T$

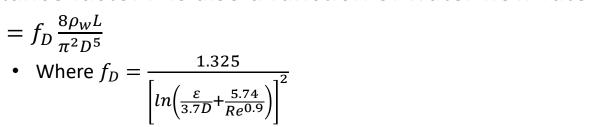
- Making this an inequality creates a convex solution space rather than a tight nonconvex space.
- However, this is a <u>relaxation</u>
 - Expanded solution space involves new points not feasible in original model
- Inequality must be as close to equality as possible to reflect a real and possible solution

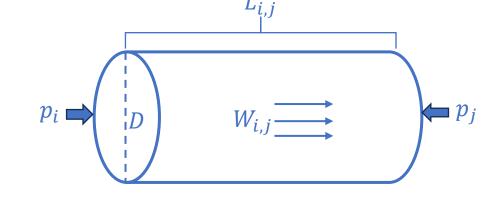
[1] M. Baran and F. F. Wu, Optimal sizing of capacitors placed on a radial distribution system," IEEE Transactions on Power Delivery, vol. 4, no. 1, pp. 735-743, Jan. 1989.

[2] A. Alizadeh, M. A. Allam, B. Cao, I. Kamwa, M. Xu, "On the application of the branch DistFlow using second-order conic programming in microgrids," Electric Power Systems Research, vol. 245, 2025.

CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering


Water Pipe Flow Constraints


• Nodal pressure difference as a function of water flow rate [1]

•
$$p_{i,t} - p_{j,t} = r_{i,j}^l \left(W_{i,j,t}^l \right)^2$$
 , $\forall i,j = 1,2,...,J,t \in T$

- Darcy-Weisbach equation for incompressible fluids
- Resistance factor r' is also a function of water flow rate

•
$$r = f_D \frac{8\rho_W L}{\pi^2 D^5}$$

• Where $f_D = \frac{1.325}{\left[ln\left(\frac{\varepsilon}{3.7D} + \frac{5.74}{Re^{0.9}}\right)\right]^2}$

Reynolds number Re depends on water flow rate within the pipe

•
$$Re = \frac{4W^l \rho_w}{\pi D \mu}$$

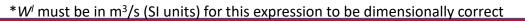
Thus, we have

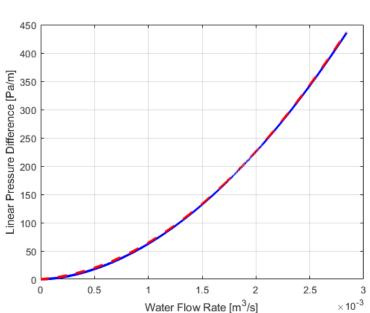
•
$$p_{i,t} - p_{j,t} = \left(\frac{10.6\rho_w L_{i,j}}{\pi^2 D^5 \left[ln\left(\frac{\varepsilon}{3.7D} + \frac{5.74}{\left(\frac{4W_{ij}^l \rho_w}{\pi D \mu}\right)^{0.9}\right)\right]^2}\right) \cdot W_{ij}^{l^2}$$

[1] P. R. Simpson, & S. Elhay, "Formulating the water distribution system equations in terms of heads and velocity," 10th Annual Symposium on Water Distribution Systems Analysis, 2008.

Department of Electrical & Computer Engineering

Darcy-Weisbach Quadratic Approximation


• Water pipe flow can be approximated as a quadratic expression


$$\bullet \ \frac{p_{i,t} - p_{j,t}}{L_{ij}} = f(W)$$

- Assuming commercial steel pipes of 2-in diameters with a maximum flow rate of 10.23 m³/h [1], [2]
 - $f(W) = (4.8570 \times 10^7)W^2 + (1.6210 \times 10^4)W\left[\frac{N}{m^3}\right]$
 - For 10,000 points plotted of original expression, an R² of 0.9998 is reached
 - This approximation requires absolute value of flow rate W
 - No direction is captured
 - Quadratic equality constraint:

•
$$\frac{p_{i,t}-p_{j,t}}{L_{i,j}} = A_{i,j,t} \left[\left(4.8570 \times 10^7 \right) \left(W_{i,j,t}^l \right)^2 + \left(1.6210 \times 10^4 \right) W_{i,j,t}^l \right], \ \forall i,j = 1, \dots, J, t \in T$$

• $A_{i,i,t} \in \{-1,1\}$: integer variable to represent flow direction

51

CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

Water Pipe Flows SOCR

- Leveraging the same second order cone relaxation (SOCR) approach for DistFlow
- Derived quadratic constraint can be relaxed as an inequality

•
$$p_{i,t} - p_{j,t} \ge L_{i,j} \left[\left(4.8570 \times 10^7 \right) \left(W_{i,j,t}^l \right)^2 + \left(1.6210 \times 10^4 \right) W_{i,j,t}^l \right] - \left(1 - y_{i,j,t} \right) M$$
, $\forall i, j \in J, i < j, t \in T$
• $p_{j,t} - p_{i,t} \ge L_{i,j} \left[\left(4.8570 \times 10^7 \right) \left(W_{i,j,t}^l \right)^2 + \left(1.6210 \times 10^4 \right) W_{i,j,t}^l \right] - y_{i,j,t} M$, $\forall i, j \in J, i < j, t \in T$

•
$$p_{j,t} - p_{i,t} \ge L_{i,j} \left[\left(4.8570 \times 10^7 \right) \left(W_{i,j,t}^l \right)^2 + \left(1.6210 \times 10^4 \right) W_{i,j,t}^l \right] - y_{i,j,t} M$$
, $\forall i, j \in J, i < j, t \in T$

- $A_{i,j,t} = 1 2y_{i,j,t}$, $\forall i, j \in J, i < j, t \in T$
 - $y_{i,j,t}$: Binary auxiliary variable to help define flow direction $A_{i,j,t}$
 - "BigM" method is used to establish constraints to ensure flow direction
 - Note that $W_{i,i,t}^l \ge 0$
- Water balance must be updated to correctly account for water flow into and out of each junction node *i*

$$\bullet \ \ W_{i,t}^{WW} + W_{i,t}^{WT} - \sum_{j \in J, i < j} \left[A_{i,j,t} W_{i,j,t}^l \right] + \sum_{j \in J, j < i} \left[A_{j,i,t} W_{j,i,t}^l \right] + W_{i,t}^{STd} - W_{i,t}^{STc} = W_{i,t}^L \ , \ \forall i \in J, t \in T$$

CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

Centralized Benchmark Solution

Objective function

•
$$f_{cost} = f_E + f_W = \sum_{t \in T} \Delta t \cdot \left\{ \sum_{i \in N} \left[\left(C_i^{Gop} P_{i,t}^G + C_i^{GNL} u_{i,t}^G \right) + C_t^{grid} P_{i,t}^{grid} + C_t^{grid} \right] + \sum_{i \in J} \left[C_i^{Op_{WW}} W_{i,t}^{WW} + C_i^{Op_{WT}} W_{i,t}^{WT} \right] + \Omega^p \sum_{i,j \in J, i < j} \left[2w_{i,j,t} - \left(p_{i,t} - p_{j,t} \right) \right] \right\}$$

- Optimal SOCR penalization weight parameters
 - Using Optuna [1], a Python-based open source hyperparameter optimization framework, a combination of Ω^l and Ω^p is obtained for optimal objective value, SOCR error, and computation time
 - Optimal weight parameters:
 - $\Omega^l = 15$
 - $\Omega^p = 0.1$

DistWEN centralized benchmark solution with and without SOCR penalizations

Weight Parameters	Objective Value	Optimal Cost [\$]	Line Current SOCR RMSE [A ²]	Nodal Linear Pressure Difference SOCR RMSE [MPa]	Computation Time [s]
Zero	1403.17	1403.17	16.975	1.1867	32.315
Optimal	1405.89	1403.16	1.1234E-5	1.4057E-6	46.764

[1] T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, "Optuna: A Next-generation Hyperparameter Optimization Framework," Proceedings of the 25th ACM DIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, New York, NY, 2019.

Department of Electrical & Computer Engineering

DistWEN Model Decentralization

- Model Interdependencies (i.e., global constraints):
 - Active power demand at every node:

•
$$P_{i,t}^{net} = P_{i,t}^L - P_{i,t}^{WP} - P_{i,t}^{SP} - P_{i,t}^G - P_{i,t}^{ESd} + P_{i,t}^{ESc} + P_{i,t}^{WW} + P_{i,t}^{WT} + P_{pump,i,t}^{WW} + P_{pump,i,t}^{WT} + P_{pump,i,$$

Reactive power demand at every node:

•
$$Q_{i,t}^{net} = Q_t^L - Q_t^{WP} - Q_t^{SP} - Q_{i,t}^G - Q_{i,t}^{ESd} + Q_{i,t}^{ESc} + Q_{i,t}^{WW} + Q_{i,t}^{WT} + Q_{pump,i,t}^{WW} + Q_{pump,i,t}^{WT} + Q_{pump,i,t}^{WT} + Q_{pump,i,t}^{WT} + Q_{pump,i,t}^{ST}$$
, $\forall i \in N, t \in T$

Water balance:

•
$$W_{i,t}^{WW} + W_{i,t}^{WT} - \sum_{j \in J, i < j} [F_{i,j,t}] + \sum_{j \in J, j < i} [F_{j,i,t}] + W_{i,t}^{STd} - W_{i,t}^{STc} = W_{i,t}^{L} + W_{i,t}^{ES}$$
, $\forall i \in J, t \in T$

•
$$F_{i,j,t} = A_{i,j,t} W_{i,j,t}^l$$
, $\forall i, j \in J, i < j, t \in T$

CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

Global Variable Definitions

- Additional auxiliary variables defined to facilitate decentralization
 - Active power consumption of WDN:

•
$$P_{i,t}^{water} = P_{i,t}^{WW} + P_{i,t}^{WT} + P_{pump,i,t}^{WW} + P_{pump,i,t}^{WT} + P_{pump,i,t}^{ST}$$
, $\forall i \in N, t \in T$

Reactive power consumption of WDN:

•
$$Q_{i,t}^{water} = Q_{i,t}^{WW} + Q_{i,t}^{WT} + Q_{pump,i,t}^{WW} + Q_{pump,i,t}^{WT} + Q_{pump,i,t}^{ST} + Q_{pump,i,t}^{ST}$$
, $\forall i \in N, t \in T$

• Water consumption of PDN:

•
$$W_{i,t}^{power} = W_{i,t}^{ES}$$
, $\forall i \in J, t \in T$

- Variable duplication
 - Global variables are duplicated, with each duplicate declared by each system

•
$$P_{E,i,t}^{water} = P_{W,i,t}^{water}$$
, $\forall i \in N, t \in T$
• $Q_{E,i,t}^{water} = Q_{W,i,t}^{water}$, $\forall i \in N, t \in T$
• $W_{E,i,t}^{power} = W_{W,i,t}^{power}$, $\forall i \in J, t \in T$ implementation

Global constraints to be relaxed for ADMM

CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

DistWEN ADMM Convergence Criteria

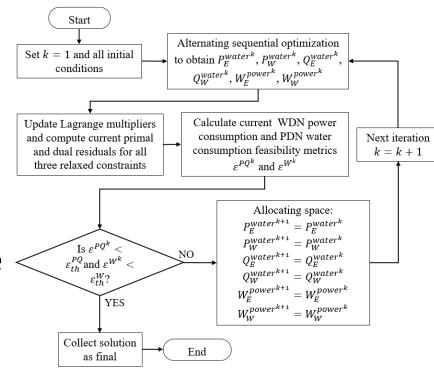
- Primal and Dual residuals are defined as usual
 - For a problem with a global constraint of the form:

•
$$x_i = z_i$$

Primal Residual:

•
$$r^{p^{k+1}} = \sum_{i \in N} (x_i^{k+1} - z_i^{k+1})$$

• Dual Residual:


•
$$r^{d^{k+1}} = \sum_{i \in N} (x_i^{k+1} - z_i^{k+1} + z_i^k - x_i^k)$$

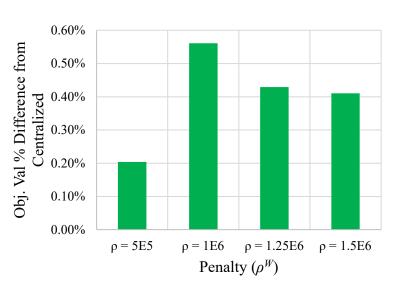
- Two feasibility metrics are used to check for convergence
 - WDN Power consumption feasibility:

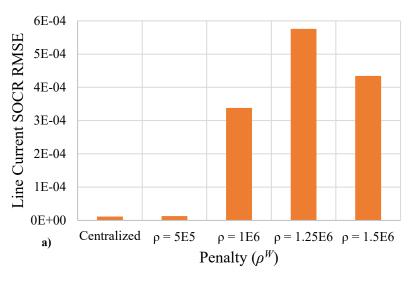
•
$$\varepsilon^{PQ^k} = \sqrt{\|r^{p_P}^k, r^{p_Q}^k\|_2^2 + \|r^{d_P}^k, r^{d_Q}^k\|_2^2}$$

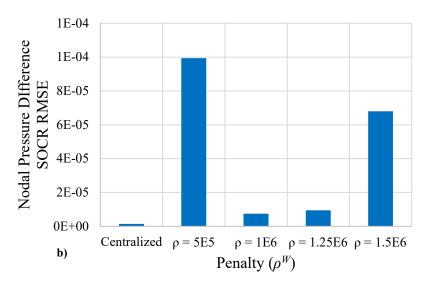
PDN Water consumption feasibility:

•
$$\varepsilon^{W^k} = \sqrt{\|r^{p_W}^k\|_2^2 + \|r^{d_W}^k\|_2^2}$$

ADMM algorithm for Decentralized DistWEN Model

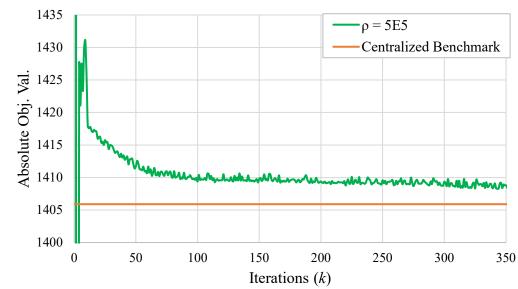


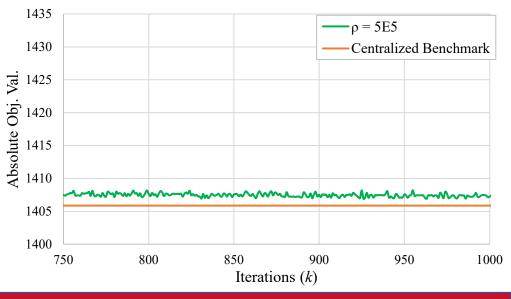

CULLEN COLLEGE of ENGINEERING


Department of Electrical & Computer Engineering

Optimality and Error Minimization

- Near-optimal results achieve, with < 0.6% deviation from centralized benchmark solution
- Best optimality obtained with $ho^W=5 imes10^5$, yielding lowest line current SOCR error, but highest nodal pressure difference SOCR error
- Hence, effective decentralization of DistWEN co-optimization is achieved
 - However, further refinement may be beneficial to reduce SOCR errors, as well as increased optimality


CULLEN COLLEGE of ENGINEERING


Department of Electrical & Computer Engineering

Convergence Behavior

- Objective value converges in an oscillatory manner
 - Consequence of using an optimality gap of 0.1%
 - Necessary to keep computation time reasonable for every ADMM iteration
 - This hinders the possibility of properly tracking the rate of change of the obj. value (RoCoOV)
 - That is, objective-based ADMM cannot be applied as currently defined
 - Nonetheless, obj. value is converging towards optimum
 - Standard ADMM still effective
 - OB-ADMM would require further research for implementation

58

Department of Electrical & Computer Engineering

Chapter 6: Summary

Research Contributions:

- Effectively convexified distribution-level water-energy nexus (DistWEN) co-optimization model, addressing operational complexities of the original model
 - Now compatible with decentralized algorithms
- Decentralized DistWEN model enabled coordinated operation of a power distribution network (PDN) and a water distribution network (WDN) without full system integration and data sharing, preserving their separate ownership and governance
 - Decentralized operation closely matched that of the centralized model with at most 0.6% deviation
- Full <u>cross-utility integration</u> implemented by coupling systems via power consumption of the WDN and water consumption of the PDN

CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

Conclusions and Future Work

CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

Contributions

- 1. Developed micro water-energy nexus (MWEN) co-optimization model, reducing total costs with combined operation vs. separate operation
- 2. Extended MWEN concept to networked operations of MWEN systems and introduced a proportional exchange algorithm for fair economic benefit allocation
- 3. Proposed and formulated an objective-based ADMM (OB-ADMM) for decentralized microgrid energy management with improved optimality results
- 4. Applied OB-ADMM to enable privacy-preserving decentralized MWEN co-optimization
- 5. Formulated a convex distribution-level water-energy nexus (DistWEN) co-optimization model integrating water and power distribution network operations
- 6. Implemented a decentralized DistWEN model via ADMM, achieving results with low deviation from optimal results of centralized model

CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

Future Work

- Immediate Next Steps:
 - Improve decentralized DistWEN formulation to reduce SOCR feasibility errors, improve final optimality, and enhance convergence checks
 - Potentially consider dynamic optimality gap, integer relaxations, and/or machine-learning initial value predictions/binary states predictions
 - Explore adaptive or automated penalty update strategies to improve ADMM performance
 - Including dynamic adjustment of SOCR penalization weight parameters
- Long-Term Next Steps:
 - Incorporate uncertainty modeling (e.g., stochastic programming or robust optimization) into the cooptimization framework
 - For prediction of demands, renewable generation, and water availability
 - Extend decentralized DistWEN concept to multi-utility/multi-resource co-ordination with broader scalability and infrastructure interconnection
 - Incorporate natural gas, hydrogen, or even transportation
 - Investigate market mechanisms and pricing schemes for interconnected multi-resource systems

CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

Additional Projects

- Lunar Surface Power System Project | Oct. 2022 Oct. 2023
 - Support from: NASA, EPRI, CenterPoint Energy
 - Design analyses for ARTEMIS south polar lunar surface power system

- Support from: Shell International
- Comprehensive review of energy flexible technologies across generators, loads,
- and energy storage systems Cable Degradation and Remaining Useful Life Prediction for Proactive
- Cable Replacement | Mar. 2024 May 2025
 - Support from: DOE, CenterPoint Energy
 - Data-driven framework for EV load projection and resulting thermal cable degradation for proactive cable replacement planning

CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

List of Publications

- 1) J. Silva-Rodriguez and X. Li, "Water-Energy Co-Optimization for Community-Scale Microgrids," 2021 North American Power Symposium (NAPS), College Station, TX, USA, 2021.
- 2) J. Silva-Rodriguez and X. Li, "Centralized Networked Micro Water-Energy Nexus with Proportional Exchange Among Participants," 2022 North American Power Symposium (NAPS), Salt Lake City, UT, USA, 2022.
- 3) C. Zhao, J. Silva-Rodriguez and X. Li, "Resilient Operational Planning for Microgrids Against Extreme Events", Hawaii International Conference on System Sciences, Maui, Hawaii, USA, 2023.
- 4) J. Silva-Rodriguez, J. Lu and X. Li, "Cost-Benefit Analysis and Comparisons for Different Offshore Wind Energy Transmission Systems", Offshore Technology Conference, Houston, TX, USA, 2023.
- 5) J. Silva-Rodriguez, X. Li, "Decentralized micro water-energy co-optimization for small communities," *Electric Power Systems Research*, vol. 234, 2024.
- 6) J. Silva-Rodriguez, E. Raffoul and X. Li, "LSTM-Based Net Load Forecasting for Wind and Solar Power-Equipped Microgrids," 2024 56th North American Power Symposium (NAPS), El Paso, TX, USA, 2024.
- 7) J. Silva-Rodriguez, T. Zhao, R. Mo, E. Endler, X. Li, "Grid-Edge Energy Flexible Technologies: A Comparative Analysis Across Generators, Loads, and Energy Storage," Renewable and Sustainable Energy Reviews, 2026, [Under Review].
- 8) J. Silva-Rodriguez and X. Li, "Decentralized Operations of Multi-Microgrid Systems: ML-Enhanced ADMM for Improved Optimality," Applied Energy, 2026, [Under Review].
- 9) J. Silva-Rodriguez, X. Li, G. Lim, "Privacy-Preserving Networked Microgrid Energy Management via Objective-Based ADMM," Power Systems Computational Conference, Limassol, Cyprus, 2026, [Under Review].
- 10) J. Silva-Rodriguez and X. Li, "ADMM Penalty Parameter Evaluation for Networked Microgrid Energy Management," IEEE PES General Meeting, Montreal, Quebec, Canada, 2026, [Under Review].
- 11) L. Fang, J. Silva-Rodriguez, X. Li, "Data-Driven EV Charging Load Profile Estimation and Typical EV Daily Load Dataset Generation," *IEEE PES General Meeting*, Montreal, Quebec, Canada, 2026, [Under Review].
- 12) J. Silva-Rodriguez, E. Raffoul, L. Fang, J. D. Wright, R. Fatima, G. J. Boyle, K. Mohamed, J. Di Girolamo, E. Easton, X. Li, "Cable Degradation Estimation and Remaining Useful Life Prediction for Distribution Networks with High EV Penetration," *IEEE Transactions on Power Delivery*, 2026, [Under Review].
- 13) J. Silva-Rodriguez, R. Raj, H. Krishnamoorthy, X. Li, "Lunar Surface Power System Architecture: Optimal Design and Components Analysis," [In Preparation].

Department of Electrical & Computer Engineering

Thank You!

QUESTIONS?

