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e Chapter 2: Micro Water-Energy Nexus (MWEN)
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* Chapter 6: Distribution-Level Water-Energy Nexus
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Chapter 1

Introduction
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Motivation

* Both water and electricity are crucial resources

 Scarcity of one resource can greatly impact the other

* A severe drought affected more than a third of the United States in 2012, limiting water

availability that constrained the operation of some power plants and other energy production
infrastructure [1]

e Winter storm Uri in 2021 caused a loss in water pressure that impacted the power grid and back-
up generators, affecting primarily groundwater systems and wastewater treatment units [2]

* Water and energy management co-optimization can yield greater
efficiency, reliability, and security [3]

* Local power and water production and distribution
* Independent operation from both main grid and water systems

[1] E. Moniz “Ensuring the Resiliency of Our Future Water and Energy Systems.” Energy.gov, June 2014, https://www.energy.gov/articles/ensuring-resiliency-our-future-water-and-energy-systems.
[2] C. E. Haddock, “Winter Storm Uri Impacts to City of Houston Water and Wastewater Systems,” Mar. 2021, https://www.houstontx.gov/govtrelations/2021lege/3.10.2021-Haddock-Uri-HUA-Statement.pdf.
[3] F. Moazeni, J. Khazaei, J. P. Pera Mendes, “Maximizing energy efficiency of islanded micro water-energy nexus using co-optimization of water demand and energy consumption,” Applied Energy, vol. 266, 2020.
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Energy and Water Management Similarities

Energy Management [1] Water Management [2]

Various Distributed Resources: Various Distributed Resources:
Controllable generators (e.g., diesel and natural gas gens.), Water treatment (e.g., wastewater, reservoir water, ground
renewable energy sources (e.g., solar and wind power), energy water, etc.), water desalination, rainwater, water storage tanks
storage systems (e.g., BES and HES)
Energy Demand: Water Demand:
Residential, commercial, industrial loads Residential, agricultural, industrial, ecological uses
Unit Commitment: Unit Commitment:
Scheduling of generators and energy storage units Scheduling of water treatment plants and water pumps
Economic Dispatch: Economic Dispatch:
Controlling generating resources to achieve supply-demand Treating and dispatching sufficient water to match demand.
balance. Minimize water treatment and distribution costs.

Minimize system operation costs

[1] C. A. Marino, M. Marufuzzaman, “A microgrid energy management system based on chance-constrained stochastic optimization and big data analytics,” Computers & Industrial Engineering, vol. 143, 2020.
[2] K. Gnawali, K. H. Han, Z. W. Geem, K. S. Jun, and K. T. Yum, “Economic Dispatch Optimization of Multi-Water Resources: A Case Study of an Island in South Korea,” Sustainability, vol. 11, no. 21, Oct. 2019.
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Water-Energy Nexus

* Relationship and interdependencies of water and energy distribution [1]

» Water used for electrical energy generation
* Thermoelectric generators
* Hydroelectric plants Seneration Electrolysis
* Hydrogen Energy Storage (Electrolysis)

* Electricity used for clean water production

* Water treatment
* Wastewater treatment, freshwater treatment, water desalination, etc. Wastewater Water Pumping
Treatment
* Pumps/water distribution equipment

Cooling

Water
Distribution

* Optimization of water and energy distribution

* Interdependent simultaneous supply of potable water and electrical power [2]
* Considers electrical power used for water related purposes
* Considers water used for power related purposes

[1] G. Pereira, A. Gonzalez and R. Rios, “Systematic Literature Review of Water-Energy Nexus: An Overview of the field and analysis of the top 50 influential papers,” 2020 IEEE Congreso Bienal de Argentina (ARGENCON), Resistencia, Argentina, pp. 1-8, 2020.
[2] A. Panagopoulo, “Water-energy nexus: desalination technologies and renewable energy sources,” Environmental Science Pollution Research, vol. 28,2021.
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Research Gaps

* Limited cross-utility integration
* Water and energy treated as loosely coupled
* Often neglecting system interdependencies and detailed dynamics
* Full integration of different interdependencies between utilities

» Water consumption of energy systems
* Energy consumption of water systems

e Operational complexities
 Comprehensive co-optimization modeling
e Consider complex nonlinear and mixed-integer formulations for accurate system representations
* Advanced modeling and computation techniques needed

* Ownership and governance
* Institutional separation of water and energy utilities
* Consider systems independence and privacy requirements
* Need to achieve distributed optimization to accommodate separate management and ownership
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Research Roadmap

Decentralized Distribution

Decentralized Conclusions
Network of Water-Energy Level Water- & Future
Microgrids Co- Energy Work

9 Optimization Nexus

* ADMM for * Decentralization * Water and
distributed of Water-Energy electricity
optimization Nexus distribution
* Objective-based  + Distributed modeling
approach to optimization of * Physical
ADMM MWEN via ADMM  characteristics of
* Decentralized » Computational power lines and
optimization benefits results water pipes
performance * Distribution-
results Level WEN model
convexification
* Decentralized
algorithm
performance
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Chapter 2

Micro Water-Energy Nexus
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MWEN Problem Description

* Small-scale water-energy management and distribution co-optimization

e Goal: To improve and provide combined cost reductions for small-scale water and
energy distribution

. Power/Water
i M O d e | | nVO I Ve S . Load Water Wastewater ‘Water
Demand Storage Treatment Desalination

* Energy and water resource management b — | Main Water ‘
Network
* Local generators and water treatment units J -
: i i -
* Renewable generation — . Maim Fower
. . . . ] . ] . Energy [ Wind Power ] [ Solar Power } [ Generators ]
* Coupling with main grid and main water distribution Storage
system (W DS) MWEN resource management system diagram
* Battery energy storage and water storage tanks
* Residential and commercial water and energy demand
PhD Dissertation Defense 10
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MWEN Optimization Model

* Day-ahead optimization
* Mixed integer nonlinear programming (MINLP)

* Objective: Minimize total operation costs
* Objective Function: minimize f. st = 5 + fw

* Power Distribution Cost: fr = At * Y\ier {dea (C;VLGug't + C;pGP;t) + Cfrid+Ptgrid+}

* Energy costs and cost associated with running generators per hour
» Water Distribution Cost: f;, = At - Y., {COPWWW VW 4 COPwTY VT  cpraintyymaint}
e Water import cost and costs of running treatment plants per volume of water
* Including operational expenses such as labor, chemicals, and maintenance costs [1], [2]
e System constraints involve microgrid energy management (MEM) elements, and micro
water management (MWM) elements

[1] A. W. Sekandari, “Cost Comparison Analysis of Wastewater Treatment Plants,” I/STE — International Journal of Science, Technology and Engineering, vol. 6, 2019.
[2] Advisan, “The Cost of Desalination,” [Online]. Available: https://prod-cm.advisian.com/en/global-perspectives/the-cost-of-desalination.
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System Constraints

* MEM system constraints include: * MWM system constraints include:

* Generator output limits * Water treatment output flow rate limits

* Main grid import limits * Wastewater and desalination units

* Energy storage limits . Wastewater aIs_o fe_atgres untreated wastewater
reservoir capacity limits

« Water treatment power consumption
* Power consumed per output

flow rate produced T =

e All power input set to balance out * Water storage system limits —L

combination of power demand and renewable . Water fill up and release
generation o P

* Water storage level
* “Water Balance”

* Balance of water demand and
combined flow rate produced
by water resources

* Charging/discharging
* Charge level

 Power Balance

-

0 3
] !_\_E... [
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Water-Energy Interdependence

* Power balance involves power consumption of MWM system

* Power balance constraint: ¥, jeq Py¢ + Yees,|Pots — Poec| + pITt = pret (vt € T)
* Netload: p*¢t = p}t — pV? — p3P + pPMWM (vt € T)
« MWM power consumption: PMWM =\PtWW + Pth + Plimp,t T Ppumpt + Lsesy, P imp.st, (Yt €T)

Power consumption of Power consumption of output pumps
treatment units of each water resource

e Wastewater: W/WW = yWWpWW " (t € T)

 Water Desalination: WVT = yWTpVT (t € T)
* yrepresents rate of amount of water treated per unit of energy consumed (e.g., m3/kWh)
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Water Pumps Power Consumption

* Electric power consumption of water pumps can be represented with a quadratic
relation as a function of water flow rate output

— 2
* a, b, and c coefficients are obtained based on properties of the water pumps
* Relationship is known as “pump curve” and data points are provided by manufacturer’s datasheets [1]

* For every water source
« Prine = Ay (WtWW) + bW, (WPW) + C%V,',’wutw W (VteT)

—_ WT wT
Ppump t = apump (Wt ) + bpump (Wt ) + Cpumput , (VteT)
STc STc STc
« Py pump,s,t — apump Wse ) + bpump Wse ) + Cpumpust , (VseSy,teT)
* Water storage uses a pump to fill up tanks, and a simple valve to release stored water
* Release occurs with normal pressure due to water weight and gravitational force

[1] B. Ulanicki, J. Kahler, and B. Coulbeck, “Modeling the efficiency and power characteristics of a pump group,” Journal of Water Resources Planning and Management, vol. 134, no. 1, pp. 88-93, 2008.
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Separate and Combined Operations Comparison

* Benchmark case: separate operation of microgrid energy management (MEM) and
micro water management (MWM) systems
* MWM meets its water demand using power from main grid
« MWM operation cost function: fiy = At * Y ser {COPWWWtWW + cOPwo VD 4
cramtyymamt 4 Cigrid+ (PtWW + P+ Pt + Prumpe Dis€Sy ngmp,s,t)}
e Variable price is known by MWM operator Water treatment and pumps power consumption
* MEM meets only residential and commercial power demand

* MEM Power Balance: ¥ je¢ PS¢y + Yees | P — PEE¢| + pITi*t — pL — pWP _
PP, (VtET)
* Excluding MWM power consumption

* Water-Energy Co-Optimization case: implements MWEN system
* Energy costs of MWM power consumption incur by MEM operator

* Comparison will show combined operation cost reductions
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Resource Operation Analysis

700

—— Separate —— Separate
25 ——Combined 600 — —— Combined
500
— 20 —
_E _i 400
5 1 5
2 z 300
[©) @)
200
5 100
0 0
0O 2 4 6 8 10 12 14 16 18 20 22 24 0O 2 4 6 8 10 12 14 16 18 20 22 24
Hour Hour
MWM system power consumption Main grid power import

* Access to local variety of energy resources in the microgrid allows for a more strategic
economic dispatch
* Water management power consumption profile changes for a more strategic use of energy sources
* Main grid import during peak hours is reduced
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Cost Benefit Analysis

Operation costs for separate MEM and MWM operations, as well as combined MWEN operation

| Separate Operation | Combined MWEN Operation

MEM Op. Cost $298.13 $312.16 $14.03 (4.60%)
MWM Op. Cost $181.86 $160.08 $21.78 (12.74%)

TOTAL $479.99 $472.24 $7.75 (1.63%)

* Overall combined operation cost reduction of 1.6%

* Microgrid energy management (MEM) operation costs went up by 4.6%, but micro water
management (MWM) operation costs went down by 12.7%
* MWM power consumption cost in separate case:
o« At-Yer CIHPMWM = §19.98
* MEM cost increase represents the new energy costs of MWM power consumption in combined case
* |l.e., MWM Power consumption cost: $19.98 - $14.03
* Energy costs of MWM power consumption reduced by 29.8%
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Chapter 2: Summary

* The proposed Micro Water-Energy Nexus (MWEN) operation provides important
economic benefits

* Water distribution costs related to energy consumption are reduced by 30%

 Research Contribution:

e Expanded cross-utility integration of a variety of water-energy interdependencies

* Energy intensity of different treatment processes
* Wastewater

e Desalination
* Power consumption of water pumps

Publications:
J. Silva-Rodriguez and X. Li, “Water-Energy Co-Optimization for Community-Scale Microgrids,” 2021
North American Power Symposium (NAPS), College Station, TX, USA, 2021, pp. 1-6, doi:
10.1109/NAPS52732.2021.9654518.

11/24/2025 PhD Dissertation Defense 18




UNIVERSITYof HOUSTON
CULLEN COLLEGE of ENGINEERING
Department of Electrical & Computer Engineering

Chapter 3

Centralized Network Operation of
Micro Water-Energy Nexus
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Network of MWEN Systems

* Networked Micro Water-Energy Nexus (Net-MWEN) : x

DER DWR DER DWR

* Multiple individual nearby systems interconnected o L f L f

Electrical [4—

e Strategic water and energy distribution Grid — —

e Collaborative resource exchange to collectively minimize r ¥ Y Central
operation costs x - Y Node

Main 4 A

* Centralized Operation Water F MWEN: | F MWEN,

System A

* All resources are scheduled by central management DER DWR | | DER DWR
system for optimal sharing among network participants

* Information from all participants communicated through central
system

* Central Node Topology

vy vy

Consumers Consumers
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Net-MWEN Co-Optimization

* Water-Energy Co-Optimization across multiple networked MWEN systems
* minimize ZmEM fcost,m = ZmEM[fE,m + fW,m]

* Both water and energy distribution follow a central node topology
* All power and water flows through a central bus and junction, respectively

» System assumptions/considerations:

* Trading with main grid and main WDS is less beneficial than trading within the network [1]

 Energy pricing: C,;grid_ < Cth < C,;g”d+

* Water pricing: CNV < craint
* No water export due to constant water price

[1] W. Zhang and Y. Xu, "Distributed Optimal Control for Multiple Microgrids in a Distribution Network," IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 3765-3779, July 2019, DOI: 10.1109/TSG.2018.2834921.
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Proportional Exchange

* Network optimization is executed as a single entity
system
* Minimizing combined cost of all local MWEN systems as a

whole
* Individual MWEN exchange cost becomes irrelevant
* May result in solutions that do not benefit all MWEN equally
* Proportional adjustment of power and water exchanges
among MWEN is needed
* Fair economic benefits to all participants must be achieved
e Overall Net-MWEN minimum cost solution must be preserved

* Proportional Exchange Algorithm (PEA)
e Post-optimization processing balancing power and water
exchanges based on individual supply and demand needs

11/24/2025 PhD Dissertation Defense

Algorithm 1: PEA for power exchange in networks of MWENs.

(=

e R R

b

10.

12
13.

14.
15
16.
17.
13.

10
20.
21

23,

25
26.
27.
28,

29,
30.

D
32

Solve MWEN optimization and obtain power exchanges PO~ |
and PA~ . and the net exchanges of each microgrid PE |

Allocate space for new variables PET and PE3
Forfin T
Formin \f
Kpn:=1
Set PET = |P§Lr| and PEZ =10
Else
Set PEt =0and PE; = |P,ﬁ.r|
end For
Formin 1S
Kpm: =1
Y mer Pt = Tmen Pre
For nin Mm% n)
Phins = 5er Pay
end For
Elze
Fornin Mm% n)
Pine =5 Pt
end For
Set PIT"" = PRt — Tnestnem Prins and BET0™ =0
Else
I ¥ pmens Pt < Tment Pt
For nin M(m#F n)
Pﬁ;lr:ﬁ.ﬁﬁ *Similar for water
end For exchange
Else
For nin M(m# n)
Phne = #I;ﬁ-:.r Bt
end Et_:nr _
Set BT = Prt — Tnesnem Prins and BEFT* =0
end For
end For
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PEA Analysis Results

* Exchanges of electric power among MWEN systems are more balanced when the
proposed proportional exchange algorithm (PEA) is introduced

1000 1 mmm MWEN1 1000 1 mmm MWEN1
e MWENZ e MWEN2Z
750 1 mmm MWEN3 750 1 mmm MWEN3
mm MWENS mm MWEN4
500 4 500 A
0 250
2 2 |
g 7] g O
£ _5p - £ 50
—500 500
—750 —750 1
-1000 - -1000 -
T T T T T T T T T T T T T T T T T T T T T T T T
2 4 6 B W 12 14 1 1 20 2 M 2 4 6 8 10 12 14 186 18 20 22 24
Hour Hour
Network Power Exchanges Without PEA Network Power Exchanges With PEA
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PEA Analysis Results

 Similar results for water exchange among MWEN systems
* More balanced exchange among participants

mm MWEN1 mm MWEN1
e MWENZ = MWENZ
7 e MWEN3 2 e MWEN3
mm MWEN4 mm MWEN4
— 1 1
= =
E E
0 U | |
[1=] [L]
(= (=
= =
=2 =
[T —]_ L _]_
-2 -2
T T T T T T T T T T T T 1 1 1 1 1 1 1 1 1 1 1 1
2 4 6 8 10 12 1@ 1 18 20 2 24 2 4 & B8 10 12 14 1 1B 20 2 24
Hour Hour
Network Water Exchanges Without PEA Network Water Exchanges With PEA
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Economic Benefits Results

* There is substantial operation costs reductions for each MWEN system
* An overall combined reduction of 5.4% is achieved

| MWEN | Separate MWEN Cost | Combined NetMWEN Cost | % Difference
$406.43 $396.34 2.48%
- 2 $1371.85 $1318.83 3.86%
3 $155.55 $120.03 22.84%
- 2 $-78.44 $-80.02 2.01%
| TOTAL $1855.40 $1755.18 5.40%
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Chapter 3: Summary

* A combined operation cost reduction is achieved among all participants compared to
their separate operation

* The implemented proportional exchange algorithm (PEA) ensures a fair economic
benefit balance based on individual system import/export needs when main grid and
water network are a present

* Research Contributions:
* Cross-utility integration across multiple localities
* Network-level operational complexity considering individual economic benefits

Publications:
* J. Silva-Rodriguez and X. Li, “Centralized Networked Micro Water-Energy Nexus with Proportional
Exchange Among Participants,” 2022 North American Power Symposium (NAPS), Salt Lake City, UT,
USA, 2022, pp. 1-6, doi: 10.1109/NAPS56150.2022.10012160.
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Chapter 4

Decentralized Networked
Mmem id Energy Management
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Centralized vs. Decentralized Network Operation

* Centralized energy management DO | s <o
* All relevant information of each microgrid at the disposal of a single T o C
energy management system [1] ! |
* Significant investment to implement control center [2] C o | | v - e
* Privacy concerns for network participants [2] 1:____3 T f
* Decentralized energy management ;;n-tr;n_z;d—e};r;y_n:a_n;g;;;n_t__l
* Each MG schedules itself separately with minimal information normsion i <= >
sharing with other MGs [1] oo | et v C
* Robustness against communication failures [2] Grid

* Privacy protection of local MG information [2]

* Fully distributed optimization method needed
 Alternating Direction Method of Multipliers (ADMM) ooz |

————

[1] F. Khavari, A. Badri, A. Zangeneh and M. Shafiekhani, “A comparison of centralized and decentralized energy-management models of multi-microgrid systems,” (o e e e

2017 Smart Grid Conference (SGC), Tehran, Iran, 2017, pp. 1-6. .
[2] C. Feng, F. Wen, et al., “Decentralized Energy Management of Networked Microgrid Based on Alternating-Direction Multiplier Method,” Energies, vol. 11, 2018. Decentrallzed energy management
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Alternating Direction Method of Multipliers (ADMM)

* ADMM is often applied to solve problems where the function optimization can be
carried out locally, and then coordinated globally via constraints
* For example: interconnection of microgrids into a distribution network to solve a decentralized
energy-management model

* Network decomposition for ADMM implementation is possible for problems of the
form [1]:
« minimize f(x) = Y;en fi(xi) >Sum of local objective functions
subject to Y;enAixi = b > Global constraint

* Then the problem is relaxed with an augmented Lagrangian [1]:
2
* 10Y) = Bien fiCO) + Sien 27 A = AT+ B i = bl

_\u/_ Penalty Parameter

Lagrange Multiplier

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 10-12, 2011.
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Network of Microgrids Optimization Model

* Optimization model for centralized operation

* Objective function: minimize ., ,em feostm > Sum of local objective functions
* feostm = Lter At {dea [(CﬁiGugl,t + CT?lpGpgl,t)] T Ctgrid+Pn€,7;id+ — Ctgrid_Png,?d_ + Cévppnl\{,n,t}

* Global Constraint: network power exchanges mF}SXZ,ZLZXf,? 223?5?2!232.
P+ Plime =0, (Ym,n € M,n % m,t €T)

* The import of microgrid m coming from n must be equal in magnitude to the export of n going tom

 Augmented Lagrangian
p 2
* Ly = Ximem feostm T Limem Lter XineNnem [/11Ln,n,t (P + Phme) + > (Pmne + Pramt) ]
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ADMM Algorithm for Network of Microgrids

Start

\ 4

Set k = 1 and all initial

conditions
Alternating Sequential | Next iteration
Optimization of each MG k=k+1
A\ 4 NO
) Obtain all Check for convergence: VES
+1
Py, = for each MG 12 k(|2 »  End
[r?ll, + 1l (I, < e ?
Update Lagrange Compute primal and dual
- k+1 > i k+1 k
multiplier A%, , residuals rn’in and r.,g’nﬂ
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ADMM Convergence Analysis

p = 0.001

—p =0.0001 —p =0.001 p=0.01 p=0.1 1.04 ——Normalized Obj. Val.| | 10
—p=1 —p=10 —p=100 3 1.035 ——Sol. Feasibility &
1.03 8
1.04 IR 2
= 1.025 . =
1.035 S 1.02 K Higher penalty = 6 7
E) 1.015 Faster convergence A i
o 1.03 = g
2 : 1.01 \r\' e 8
< -+
= 1.005 \ , E
o 1.025 Z \ | 3
° 0.995 LI U] 1 o
= 1.02 ’
_(g 1.015 Lower optimality p=0.01 Iterations (k)
g 1.04 ——Normalized Obj. Val. | | 10
= 1. S
g 101 e T T T T =~ ) e 1.035 i~ ——Sol. Feasibility 8
3 - = < Obj. value rate of
Z 1.005 s N\
K ( ) change reaches zero as 6
1\ \ ~ » solution approaches

Solution Feasibility ()

~ - .

0.99 N optimal value isible solution, but \ 4
995 :

0 500 1000 1500 2000 2500 3000 £ 1.005 l not optimal 5

. L

0 50 100 150 200

__________________ terations (k) _ _ _ _ _ _ _ o ____.

\ 0.995
|
: Iterations (k)
[

' *A combination of solution feasibility and global objective
: value must be considered to determine convergence
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Objective-Based Approach

Set k = 1, OB-ADMM ; : Obtain network power
Alternating Sequential N
Start hyperparameters, and all Lo exchanges P" for each
. . Optimization . .
initial conditions microgrid

Fm——————————— = R
Next iteration Update ;{Lkﬂ,
k - k + 1 Tpk"’land ?‘dk+1

In addition to:

»

- 2 2
S+ 120 < e

Is the
avg(RoCoOV) < B,

Determine the avg. RoCoOV
and avg. ¢ for the last £,

and £* < avg(e).? iterations
| Objective-based
____________________________ 1 stopping strategy

Collect current

solution as final End
p: Average rate of change of the objective value (RoCoQV) threshold.
&p- Feasibility metric threshold for single-node microgrid ADMM formulation.

11/24/2025 PhD Dissertation Defense 33




UNIVERSITYof HOUSTON

CULLEN COLLEGE of ENGINEERING
Department of Electrical & Computer Engineering

Standard ADMM vs. OB-ADMM

° ObjeCtive-based ADMM (O B_ADMM) Results for a penalty p = 0.001 and &, = 0.01
introduces two new hyperparameters Standard ADMM results

. . % Difference from Optimal
+ ks Iteration offset

* Number of iterations through which avg. 8 2.290 %
solution feasibility and obj. value rate of
change is analyzed

* [: Obj. value rate of change threshold

OB-ADMM results

v
lteration AR O, LT Iterations (k) ffolr)r:f:)e rtei:::a(:—.l
Offset (k) Change Threshold (B) Obi \Zlue

* Minimum rate of change of objective value in 0.001 407 0.000 %

the last k. iterations 0.01 374 0.148 %

: T : : 5o 0.1 74 0.103 %

* Optimality increases with higher k. and s 0.001 385 ST

lower f3, at the expense of taking more 25 0.01 305 0.014 %

: : 25 0.1 52 0.121%
Iterations

* Higher guarantee of optimality than standard

ADMM
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Importance of Initial Values for ADMM

* Premise: Closer initial values are to the actual solution may yield higher optimality

* However, in a real situation, the Offset
global optimal solution for the terations (K] Objval%e | .. - Obj Val %
network is not kﬂOWﬂ Difference Difference

. Zero init.

* Power exchange must be estimated values 1.2417 283 0.4876
as close as possible and used as 30 19 0.0999 79 0.0036
initial values for the ADMM 20 18 0.0135 45 0.0026

. 10 27 0.0019 46 0.0004

algorithm Zeroinit, 4 29.878 619 0.8110

values ’ ’

30 6 5.0553 98 0.1198

17 0.6957 73 0.0792

:___I__________.___. ______ -: 20 0.0603 49 0.0371
' * Improved optimality : Zeromlt

|« Lower number of iteration ; Va|ues = 22 2L LLAAEE

! when using OB-ADMM : 3 7.0544 651 0.1367

""""""""""" B 3 4.3536 435 0.0934

5 2.0364 220 0.0485
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ADMM ML-Assisted Model Evaluation

* Using a fully connected network (FCN) and a convolutional neural network (CNN)
* Models trained with 4,000 sample cases of different MG net load and grid prices
* 10% of cases for testing and 10% for validation
* 50 additional evaluation cases

* Model Performance
1.4% 3,000

B Zero Init. Values B Zero Init. Values
1.2% B FCN Prediction 2500 | ™ FCN Prediction
B | D-CNN Prediction ’ ® ID-CNN Prediction
0
§ 1.0% X 2,000
2 0.8% &
2 S 1,500
A 0.6% I
o 2 1,000
S 0.4% =
0.0001 0.001 0.01 0.1 0.0001 0.001 0.01 0.1
Penalty (p) Penalty (p)
Final optimality as % difference from centralized benchmark Number of iterations taken to achieve solution.
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ML-Assisted Method Robustness Analysis

Average % improvement of obj. value and iterations for each ML model using OB-ADMM T 16 1 .
PN apenN S0l o roneedcton
= S 14~ L rediction
EER Obj Value | Tterations | Obj.Value | Iterations | § | o - predcton
0.0001 66.748% 14.230% 58.469% -2.145% g2 ¢ Average
0.001 59.420% 7.977% 55.566% 9.784% “é 10 1 =
[ 001 | 49.340% -0.906% 45.523% 0.814% 5 | .
01 39.546% 36.953% 21.617% 54.449% g
g 07 ° :
* Substantial optimality improvement compared to simply 8 af. ij{;
. e e, <t I
using zero initial values £ o o !“i Iifi el
. o AR T K b ni
* Number of iterations improves as well for most penalty & — —~ -
selections penalty (p)

Absolute obj. value difference from centralized
benchmark for the 50 additional test cases

* OB-ADMM + ML initial value predictions increases final
optimality and robustness towards penalty value selection
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Chapter 4: Summary

* Decentralized approach achieves privacy preservation for MG network participants
* Only communicate power exchange within the network

* Objective-based ADMM provides higher guarantee of global optimal solution
* Coupled with initial value predictions via machine learning (ML), final solution optimality as well as
algorithm robustness can be further improved
e Research Contributions:

* Decentralized approach preserves autonomy and privacy needed for separate ownership and
governance of each utility

* Operational complexity is advanced by enhancing ADMM with objective-based and ML approaches

Publications:
Jesus Silva-Rodriguez, Xingpeng Li, Gino Lim, “Privacy-Preserving Networked Microgrid Energy Management via
Objective-Based ADMM,” Electric Power Systems Research (PSSC Special Issue), 2026, [Under Review].
Jesus Silva-Rodriguez and Xingpeng Li, “Decentralized Operations of Multi-Microgrid Systems: ML-Enhanced
ADMM for Improved Optimality,” Applied Energy, 2026, [Under Review].
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Chapter 5

Decentralized Water-Energy Co-Optimization
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Decentralized Water-Energy Operations —

MWEN

e Current water and electrical systems do not share
control and operations

* Water and electrical utilities are owned and operated
separately

* A centralized operation would require both systems to be
under a single management system

Centralized Management

e A decentralized micro water-energy nexus (MWEN)
would be a more realistic application

* Both systems may retain their autonomy
* Microgrid energy management (MEM)

Water
Dist. Dist.

* Micro water management (MWM) Power

Decentralized Management

PhD Dissertation Defense
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ADMM for Decentralized MWEN

* Network decomposition for ADMM is possible in problems of the form:
« minimize f(x) = Y;en fi(x)
subject to Yy Aix; = b
* Two systems (MEM and MWM): N = 2
* h=fpandfz = fw | |
* fe= At Teer{Zgee (Co ube + GRS, ) + ¢TI
N fW — At - ZtET{COpWWWtWW + COpWTWtWT + anain+thain+}

* Power balance constraint: X,y Py + Yees, | Pat® — PE:¢| + pITie* — pL — pVP _ pSP 4
(Vt €T)

* MWWM power consu P + P+ Pyump,t + Poump,e + Zsesyy Poimp,st»(Vt €T)

Global variable
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ADMM for Decentralized MWEN

* Variable Duplication

Set k = 1, OB-ADMM

Start » hyperparameters, and
* MWM power consumption assumed by MEM all initial Tondltlons
operator: PMWM v
. ) Alternating Sequential . pwater k+1
 MWM power consumption as determined by Optimization of MEM | 0Pt PE4*" and | | Update A¢ ™",
MWM operator itself: Py, ‘
_________________________________________ ,
* Global Constraint (i.e., ZiENAixi = D) Next feration |,
k=k+1
« P —PYM =0

Is the avg. oby.
val. rate of
change < 8, and
ek < avg(e).?

Lagrangian for ADMM algorithm:

fE +fW+ZteTAt( water water) 4+
pZtET( pwater Pwater)2

Determine the avg. obj. val.
rate of change and avg(e)
for the last &, iterations

e Relaxing constraint and forming augmented |

Collect current
solution as final
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Pump Power Constraints Linearization

* ADMM is a simple but powerful algorithm well suited for distributed convex
optimization [1]

! 1S S N S S S ) P S e e A Lt

* MWEN Co-Optimization model is hot convex
* Water pump’s power consumption equality
constraints are non-affine functions [2]
* Poump = aW?+ bW + ¢
e Equation must be convexified

* Linearization via heuristics least-squares method [3]

 Fitting multiple linear functions to input data, creating a
piecewise linear fit

|
e feee

|
//

I
_________%_____ |
ewise‘
arlzat||bn

|
R

|

|

|

|

|
|
|
|
|
|
e Piecewise Linearization |
|
|

— v
¢ pump E F - {aW + b} [1] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, “Distributed optimization and statistical learning via the
~ . . . . alternating direction method of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1-24, Jan. 2011.
° .
v number Of llnea r fU nctions Of the pleceWISe set F [2] S. Boyd, L. Vandenberghe, “Convex Optimization,” Cambridge University Press, 7th Edition, pp. 136-138, 2009.

[3] A. Magnani and S. P. Boyd, “Convex piecewise-linear fitting,” Optimize Eng., vol. 10, no. 1, pp. 1-17, 2009.
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Standard ADMM vs. OB-ADMM Approach

Results for MWEN standard and objective-based ADMM
o = — =
&n = 0.001,5 = 0.001, ks = 25

Penalt - -
enatty % Difference w/ . % Difference .
' . P . Iterations (k) . Iterations (k)
—— Obj. Val. % Difference Solution Feasibility (¢) Centralized w/ Centralized
66

- — = Standard ADMM Stopping Point - = - OB-ADMM Stopping Point 0.05% > 0.05%

0.006 i i 0.1 0.12% 5 0.05% 66
° ! ! 0.14% 5 0.07% 253
2 000> ) ﬂ | 0.08 0.14% 5 0.14% 28
8 0004 ||! : &
?'D: : ; 0.06 %\ 100 B Test Case 1
> 0.003 ! ! = 90 m Test Case 2
°\_ : : 0.04 g 30 H Test Case 3
§ 0.002 : : [2 g 70
80001 | l | | 0.02 5 gg
)
0 L] ~ 0 % 40
0 20 40 60 80 < 30
Iterations (k) 90
Solution optimality and feasibility for MWEN via standard ADMM and OB- 10
ADMM with p = 1. 0
100
Penalty (p)
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Test Cases Results

* OB-ADMM is used to solve three different test cases
e Test Case 1: 70 residential units and 3 commercial units, grid-connected
* Test Case 2: 100 residential units and 4 commercial units, grid-connected
* Test Case 3: 60 residential units and 2 commercial units, isolated

0.14% [ Standard ADMM Test Case 1 Test Case 2 Test Case 3

0.12% | mOB-ADMM 3.00%

B 0.10% 2.00%
2 ?3 AU R .
§ T‘; 0.08% 3 2 0.00% I
= £ 0.06% 5 = -1.00% I
O = 0
go 0.04% == 2.00%
S A O -3.00%
0 (=]
0.02% S 4.00%
0.00% -5.00% | ™ Standard ADMM
Test Case 1  TestCase2  Test Case 3 -6.00% | ®OB-ADMM

Objective value deviation from centralized model result for

Micro water management net energy consumption deviation
each ADMM approach.

from centralized model result for each ADMM approach.
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Chapter 5: Summary

* The proposed decentralized model is able to obtain a global optimal solution

* Both operation cost and MWM energy consumption converge to the same quantities obtained by
the centralized model

* Implementing OB-ADMM vyielded optimality and convergence robustness compared to
standard ADMM for MWEN problem

e Research Contributions:

* Micro Water-Energy Nexus formulated for full system privacy and independent operation to
maintain separate ownership and governance between water and energy systems

* Piecewise linearization of pumps power consumption addresses operational complexities of non-
convex formulation

Publications:
* J.Silva-Rodriguez and X. Li, “Decentralized micro water-energy co-optimization for small
communities,” Electric Power Systems Research, vol. 234, 2024, doi: 10.1016/j.epsr.2024.110611.

11/24/2025 PhD Dissertation Defense 46




UNIVERSITYof HOUSTON
CULLEN COLLEGE of ENGINEERING
Department of Electrical & Computer Engineering

Chapter 6

Distribution-Level Water-Energy Nexus
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Micro Water-Energy Co-Optimization

. . . . Power/Water
* Water-Energy Nexus Distribution Network Modeling o, [ s ][ S ([ =
L) T T Main Water
. . . . 3 | ) v v etwor]
* Community-Scale: single-node models with small-scale distributed | — : : —
resou rces ;:nevrgy [Wind lPower] { Solar ;ower J[ Genelrators } Grid
e Distribution-Level: multi-node interconnected system
* Requires physical network modelin
. P y 8 Water consumption for T | > |‘T | ST_l‘]_I_
* Power lines hydrogen production

* Power flow m

e Thermal limits S _Jj =:|ww Main
Grid

* Voltage limits == ;Q—‘ BES ;
. : b § —| Sp |
Water pipes Power consumption of water —A ! J L S
e Water pipe flow treatment EE— ﬁ ’j ’_# —
»  Water flow limits [ _ Ground
| ST <Jl | ST Jl | ST |.|l water

* Pressure limits
* Modeling of additional interdependencies between distribution systems

* Water demand of electricity resources
* Power demand of water resources
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Distribution System Power Flow (DistFlow) [1]

* Power flow for radial distribution networks [1]

. Second—order cone relaxation (SOCR) [2]
* ZiENu(]) L]t (Il] t) Rl]] ZlENd(]) [Pl] + pload Pjgen ) Vj € N,t eT
* LieNy() Qut (Iije) Xl]] LieN 4(j) [Q]l] + Qload Q}-gen , VJEN,teT
2 2 2 ..
. (V]t) = (Vit) — (RlJPl]t +XijQij,t + [(Rl]) + (Xij) ](Iij,t) , Vi,JEN,t€T

) ( llJ t) (Ql] t) : (Iij,t) (Vi,t)z , Vi,JEN,teT

* Making this an inequality creates a convex solution space rather than a tight nonconvex space.

 However, this is a relaxation
* Expanded solution space involves new points not feasible in original model
* Inequality must be as close to equality as possible to reflect a real and possible solution

[1] M. Baran and F. F. Wu, Optimal sizing of capacitors placed on a radial distribution system,” IEEE Transactions on Power Delivery, vol. 4, no. 1, pp. 735-743, Jan. 1989.
[2] A. Alizadeh, M. A. Allam, B. Cao, I. Kamwa, M. Xu, “On the application of the branch DistFlow using second-order conic programming in microgrids,” Electric Power Systems Research, vol. 245, 2025.
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Water Pipe Flow Constraints

* Nodal pressure difference as a function of water flow rate [1]

2 L
.1 l .. i,j
° pi,t_pj;t _ri,j (Wi,j,t) ) Vl,] = 1,2, ,],tET |
* Darcy-Weisbach equation for incompressible fluids
e Resistance factor r' is also a function of water flow rate .
8p. L Pi W: ,—» Pj
° ,r — f pW lr] >
D 77,'2D5
* Where fp = 1325 5
[ln(ﬁ+%)]
* Reynolds number Re depends on water flow rate within the pipe
e Re = W Py
mDp
* Thus, we have
_ 10.6pyLj j ;2
* Pit —Pjc = £ 5.74 2\’ Wij
m2D>|In | —-4 l 59
<4Wijpw) [1] P. R. Simpson, & S. Elhay, “Formulating the water distribution system equations in terms of heads and velocity,” 10th Annual
D u Symposium on Water Distribution Systems Analysis, 2008.
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Darcy-Weisbach Quadratic Approximation

* Water pipe flow can be approximated as a quadratic expression
o pi,t_pj,t — f(W) 450

Lij 400 -

al
[
o]
o

e Assuming commercial steel pipes of 2-in diameters with a
maximum flow rate of 10.23 m3/h [1], [2]

* f(W) = (48570 x 107)W? + (1.6210 x 101)W ||
* For 10,000 points plotted of original expression, an R of 0.9998 is reached

* This approximation requires absolute value of flow rate W
* No direction is captured 0 05 1 15 2 25 3

Water Flow Rate [m®/s] %103
* Quadratic equality constraint:

300

250

200

Linear Pressure Difference [Pa/m]

-
=
=

M) s 2
. pl,tL ijj,t = Ay i [(4.8570 X 107) (Wifj,t) +(1.6210 x 104)1/,/1.{],4 Vi j=1..,J,teT

* A;;: € {—1,1}: integer variable to represent flow direction

* W must be in m3/s (S| units) for this expression to be dimensionally correct
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Water Pipe Flows SOCR

* Leveraging the same second order cone relaxation (SOCR) approach for DistFlow

* Derived quadratlc constraint can be relaxed as an mequahty

© Die—Dje =Ly (48570x107)( Ut) +(1.6210 x 10YW/, | = (1 =y )M , Vi,j€],i<jt €T

* pj,t _ pi,t 2 Li, (4 8570 X 107)( l] t) + (1 6210 X 104) l]t yi,j,tM ) Vlr] EI]II: <];t € T

* Ajjr=1- Zle,t , Vi,JEJ,i<j,teT
* ¥ijt: Binary auxiliary variable to help define flow direction 4; j +
* “BigM” method is used to establish constraints to ensure flow direction

* Note that Wlljt =0
* Water balance must be updated to correctly account for water flow into and out of each junction
node i
ww wWT STd STc _ L :
« Wit " + Wik _ZjE],i<lei,]t l]t]+Z]E]]<ll ]lt]-l_Wlt W =W ,Vie],teT

11/24/2025 PhD Dissertation Defense 52




UNIVERSITYof HOUSTON

CULLEN COLLEGE of ENGINEERING
Department of Electrical & Computer Engineering

Centralized Benchmark Solution

* Objective function
G G id id
* feost = fe + fw = Leer At - {ZLEN [(C P th) + ¢ +Piin Tt
0 0
Q' Yjenjxi i) e Ri ,]] + Xiej [C WY + ¢ pWTWi,tT] + 0P ¥ regicil2Wije — (Die — Pj,t)]}

* Optimal SOCR penalization weight parameters

e Using Optuna [1], a Python-based open source hyperparameter optimization framework, a combination of
Q! and QP is obtained for optimal objective value, SOCR error, and computation time

Optimal weight parameters:
- 0l=15
- QP =0.1

DistWEN centralized benchmark solution with and without SOCR penalizations

Weight Objective . . Nodal Linear Pressure ) .
Optimal Cost [$] | Line Current SOCR RMSE [A?] . Computation Time [s]
Parameters Value Difference SOCR RMSE [MPa

Zero 1403.17 1403.17 16.975 1.1867 32.315
Optimal 1405.89 1403.16 1.1234E-5 1.4057E-6 46.764

[1] T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, “Optuna: A Next-generation Hyperparameter Optimization Framework,” Proceedings of the 25th ACM DIGKDD International Conference on Knowledge Discovery and Data Mining, Association
for Computing Machinery, New York, NY, 2019.

11/24/2025 PhD Dissertation Defense

53




UNIVERSITYof HOUSTON

CULLEN COLLEGE of ENGINEERING
Department of Electrical & Computer Engineering

DistWEN Model Decentralization

* Model Interdependencies (i.e., global constraints):
* Active power demand at every node:
o PIEt=PL =P =P =P = P+ P+ P+ P P P i ¥ Poimp it VIEN,LET
* Reactive power demand at every node:
C QI = QE = QYT = QT = QF = QP+ QT+ QY QT+ Qi + Qe + Qoo VIENLET
* Water balance:
c WY A W =X icilFojel + Zjep i<l el + W =W =W+ Wi vie ) teT

l . . . .
® Fi,j,t = Ai,j,tWi,j,t'v"'] E],l <],t eET
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Global Variable Definitions

* Additional auxiliary variables defined to facilitate decentralization

* Active power consumption of WDN:

. water _ pWW wT ww wT ST :
Pi,t - Pi,t + Pi,t + Ppump,i,t + Ppump,i,t + Ppump,i,t ,ViEN,teT

* Reactive power consumption of WDN:
BT = QY + QT + Qi it + Qe + Qo ViEN,teT

pump,i,t pump,i,t pump,i,t

* Water consumption of PDN:
« WY =W vie  teT

 Variable duplication
* Global variables are duplicated, with each duplicate declared by each system

© =~ water _ pwater « T

| PR =P VieN,teT |

| o Quwater — gwater yiec N teT | Global constraints to be relaxed for ADMM
I ) )

!

E,it Wit . _
I implementation

. power __ ..,power :
I WE,i,t - WW,i,t ,Vl E ], t E T JI
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DistWEN ADMM Convergence Criteria

* Primal and Dual residuals are defined as usual

* For a problem with a global constraint of the form: Star
Alternating sequential optimization
) x , — Z . Setk=1 and all initial » to obtain Pwaterk’ Pwaterk’ Qwaterk’ <
l l conditions Qmateri’ Wgoweﬁ’ ngowi.k

* Primal Residual: ¢ |

° P k+1 — k+1 _ k+1 Update Lagrange multipliers Calculate current WDN power

= Z iEN X i Z i and compute current primal consumption and PDN water Next iteration
and dual residuals for all consumptionkfeasibi]ikty metrics k=k+1
1 . three relaxed constraints PQ¥ and eV

* Dual Residual: o nde

o pdktl _ k+1 k+1 k k
r —ZieN(x — Zj +Zi _X)

. Allocating space:
l l

waterk*1 _ pwater¥
PE - PE

k+1 k
Pwater - Pwater
w w

k
Is ePQ" <
PQ wk
Etn an([i’v W<
en?

k+1 k
Qg'vater — QEVCLCBT
k

* Two feasibility metrics are used to check for convergence
 WDN Power consumption feasibility:

Qt»\nrn?erkJr1 _ Qwater
w KW
k+1 k
power __ yypower
Wy =Wy

k+1 k
power __ yrpower
WW - WW

2 2 5
k k k k Collect solution
° EPQ = \/”’r'ppk, ’r'pQ || + ||’r'dP ,’r'dQ || as final End
2

2
ADMM algorithm for Decentralized DistWEN Model

 PDN Water consumption feasibility:
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Optimality and Error Minimization

0.60% 6E-04 1E-04
g 53] 3
£ 0.50% < seo04 S 1E-04
3 e &
5 3 0.40% & 4E-04 = tn 8E-05
5 8 3 o2
'E £ 030% N 3E-04 q‘s) 22 6E-05

[= k= 2
\C’ Q o 0] Q
S0 0.20% £ 2E-04 = O 4E-05
= =) A~ A
> ©) =
& 0.10% 2 1E-04 B 2E-05
o 0 Z.

0.00% OE+00 === — 0E+00 = - .
p=5E5 p=1E6 p=125E6 p=1.5E6 a) Centralized p=5E5 p=1E6 p=125E6 p=1.5E6 b Centralized p=5E5 p=1E6 p=1.25E6 p=1.5E6
Penalty (p") Penalty (p") Penalty (p")

* Near-optimal results achieve, with < 0.6% deviation from centralized benchmark solution

* Best optimality obtained with p" = 5 x 102, yielding lowest line current SOCR error, but highest
nodal pressure difference SOCR error

* Hence, effective decentralization of DistWEN co-optimization is achieved
* However, further refinement may be beneficial to reduce SOCR errors, as well as increased optimality
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1435
——p=5E5

Convergence Behavior s

* Objective value converges in an oscillatory ;izz
manner e
* Consequence of using an optimality gap of 0.1% § 1410
* Necessary to keep computation time reasonable for every 1405
ADMM iteration 1400
« This hinders the possibility of properly tracking the rate Y e
of change of the obj. value (RoCoQOV) 1435 s
* Thatis, objective-based ADMM cannot be applied as currently 1430 —— Centralized Benchmark
defined §1M5
* Nonetheless, obj. value is converging towards optimum 2 1.
« Standard ADMM still effective j'é 1415
* OB-ADMM would require further research for implementation ﬁ 1410
oS AL NN p AN IIVA AN A IMN=ANSNA WA A~
1400750 800 850 900 950 1000
Iterations (k)
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Chapter 6: Summary

e Research Contributions:
 Effectively convexified distribution-level water-energy nexus (DistWEN) co-optimization
model, addressing operational complexities of the original model
* Now compatible with decentralized algorithms

* Decentralized DistWEN model enabled coordinated operation of a power distribution
network (PDN) and a water distribution network (WDN) without full system integration
and data sharing, preserving their separate ownership and governance

* Decentralized operation closely matched that of the centralized model with at most 0.6% deviation

 Full cross-utility integration implemented by coupling systems via power consumption of
the WDN and water consumption of the PDN
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Conclusions and Future Worlk
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Contributions

1. Developed micro water-energy nexus (MWEN) co-optimization model, reducing total costs
with combined operation vs. separate operation

2. Extended MWEN concept to networked operations of MWEN systems and introduced a
proportional exchange algorithm for fair economic benefit allocation

3. Proposed and formulated an objective-based ADMM (OB-ADMM) for decentralized
microgrid energy management with improved optimality results

4. Applied OB-ADMM to enable privacy-preserving decentralized MWEN co-optimization

5. Formulated a convex distribution-level water-energy nexus (DistWEN) co-optimization
model integrating water and power distribution network operations

6. Implemented a decentralized DistWEN model via ADMM, achieving results with low

deviation from optimal results of centralized model

11/24/2025 PhD Dissertation Defense 61




UNIVERSITYof HOUSTON

CULLEN COLLEGE of ENGINEERING
Department of Electrical & Computer Engineering

Future Work

* Immediate Next Steps:

* Improve decentralized DistWEN formulation to reduce SOCR feasibility errors, improve final optimality,
and enhance convergence checks

* Potentially consider dynamic optimality gap, integer relaxations, and/or machine-learning initial value
predictions/binary states predictions

* Explore adaptive or automated penalty update strategies to improve ADMM performance
* Including dynamic adjustment of SOCR penalization weight parameters

* Long-Term Next Steps:

* Incorporate uncertainty modeling (e.g., stochastic programming or robust optimization) into the co-
optimization framework

* For prediction of demands, renewable generation, and water availability

* Extend decentralized DistWEN concept to multi-utility/multi-resource co-ordination with broader
scalability and infrastructure interconnection

* Incorporate natural gas, hydrogen, or even transportation
* Investigate market mechanisms and pricing schemes for interconnected multi-resource systems

11/24/2025 PhD Dissertation Defense 62



UNIVERSITYof HOUSTON
CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

Additional Projects

* Lunar Surface Power System Project | Oct. 2022 — Oct. 2023
e Support from: NASA, EPRI, CenterPoint Energy
e Design analyses for ARTEMIS south polar lunar surface power system

* Energy Flexibility Technology Survey Study | Nov. 2023 — Nov. 2024
e Support from: Shell International

 Comprehensive review of energy flexible technologies across generators, loads,
and energy storage systems

* Cable Degradation and Remaining Useful Life Prediction for Proactive
Cable Replacement | Mar. 2024 — May 2025
* Support from: DOE, CenterPoint Energy

e Data-driven framework for EV load projection and
resulting thermal cable degradation for proactive cable
replacement planning

CenterPoint.
Energy
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Thank You!

é? QUESTIONS?
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