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• Chapter 1: Introduction

• Chapter 2: Micro Water-Energy Nexus (MWEN)

• Chapter 3: Centralized Network Operation of MWEN

• Chapter 4: Decentralized Networked Microgrid Energy Management

• Chapter 5: Decentralized Water-Energy Co-Optimization

• Chapter 6: Distribution-Level Water-Energy Nexus

• Chapter 7: Conclusions and Future Work
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Motivation
• Both water and electricity are crucial resources

• Scarcity of one resource can greatly impact the other
• A severe drought affected more than a third of the United States in 2012, limiting water 

availability that constrained the operation of some power plants and other energy production 
infrastructure [1]

• Winter storm Uri in 2021 caused a loss in water pressure that impacted the power grid and back-
up generators, affecting primarily groundwater systems and wastewater treatment units [2]

• Water and energy management co-optimization can yield greater 
efficiency, reliability, and security [3]

• Local power and water production and distribution
• Independent operation from both main grid and water systems

411/24/2025

[1] E. Moniz “Ensuring the Resiliency of Our Future Water and Energy Systems.” Energy.gov, June 2014, https://www.energy.gov/articles/ensuring-resiliency-our-future-water-and-energy-systems.
[2] C. E. Haddock, “Winter Storm Uri Impacts to City of Houston Water and Wastewater Systems,” Mar. 2021, https://www.houstontx.gov/govtrelations/2021lege/3.10.2021-Haddock-Uri-HUA-Statement.pdf. 
[3] F. Moazeni, J. Khazaei, J. P. Pera Mendes, “Maximizing energy efficiency of islanded micro water-energy nexus using co-optimization of water demand and energy consumption,” Applied Energy, vol. 266, 2020.
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Energy and Water Management Similarities
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[1] C. A. Marino, M. Marufuzzaman, “A microgrid energy management system based on chance-constrained stochastic optimization and big data analytics,” Computers & Industrial Engineering, vol. 143, 2020.
[2] K. Gnawali, K. H. Han, Z. W. Geem, K. S. Jun, and K. T. Yum, “Economic Dispatch Optimization of Multi-Water Resources: A Case Study of an Island in South Korea,” Sustainability, vol. 11, no. 21, Oct. 2019.

Energy Management [1] Water Management [2]
Various Distributed Resources:

Controllable generators (e.g., diesel and natural gas gens.), 
renewable energy sources (e.g., solar and wind power), energy 

storage systems (e.g., BES and HES)

Various Distributed Resources:
Water treatment (e.g., wastewater, reservoir water, ground 

water, etc.), water desalination, rainwater, water storage tanks

Energy Demand:
Residential, commercial, industrial loads

Water Demand:
Residential, agricultural, industrial, ecological uses

Unit Commitment:
Scheduling of generators and energy storage units

Unit Commitment:
Scheduling of water treatment plants and water pumps

Economic Dispatch:
Controlling generating resources to achieve supply-demand 

balance.
Minimize system operation costs

Economic Dispatch:
Treating and dispatching sufficient water to match demand.

Minimize water treatment and distribution costs.
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Water-Energy Nexus
• Relationship and interdependencies of water and energy distribution [1]

• Water used for electrical energy generation
• Thermoelectric generators
• Hydroelectric plants
• Hydrogen Energy Storage (Electrolysis)

• Electricity used for clean water production
• Water treatment

• Wastewater treatment, freshwater treatment, water desalination, etc.
• Pumps/water distribution equipment

• Optimization of water and energy distribution
• Interdependent simultaneous supply of potable water and electrical power [2]

• Considers electrical power used for water related purposes
• Considers water used for power related purposes

611/24/2025

[1] G. Pereira, A. González and R. Ríos, “Systematic Literature Review of Water-Energy Nexus: An Overview of the field and analysis of the top 50 influential papers,” 2020 IEEE Congreso Bienal de Argentina (ARGENCON), Resistencia, Argentina, pp. 1-8, 2020.
[2] A. Panagopoulo, “Water-energy nexus: desalination technologies and renewable energy sources,” Environmental Science Pollution Research, vol. 28, 2021.
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Research Gaps
• Limited cross-utility integration

• Water and energy treated as loosely coupled
• Often neglecting system interdependencies and detailed dynamics

• Full integration of different interdependencies between utilities
• Water consumption of energy systems
• Energy consumption of water systems

• Operational complexities
• Comprehensive co-optimization modeling

• Consider complex nonlinear and mixed-integer formulations for accurate system representations
• Advanced modeling and computation techniques needed

• Ownership and governance
• Institutional separation of water and energy utilities

• Consider systems independence and privacy requirements
• Need to achieve distributed optimization to accommodate separate management and ownership

711/24/2025
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Research Roadmap
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• MWEN model 
formulation
• MWEN operation 
and system 
implementation 
examples
• Cost-Benefit 
Analysis

• Central node 
centralized 
networks of MGs
• Network of 
MWEN systems
• Proportional 
exchange 
algorithm
• Network 
operation benefit 
analysis

• ADMM for 
distributed 
optimization
• Objective-based 
approach to 
ADMM 
• Decentralized 
optimization 
performance 
results

• Decentralization 
of Water-Energy 
Nexus
• Distributed 
optimization of 
MWEN via ADMM
• Computational 
benefits results 

Centralized 
Water-Energy 

Networks

Micro Water-
Energy Nexus

Decentralized 
Water-Energy 

Co-
Optimization

Decentralized 
Network of 
Microgrids

Distribution 
Level Water-

Energy 
Nexus

• Water and 
electricity 
distribution 
modeling
• Physical 
characteristics of 
power lines and 
water pipes
• Distribution-
Level WEN model 
convexification
• Decentralized 
algorithm 
performance

Conclusions 
& Future 

Work
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MWEN Problem Description
• Small-scale water-energy management and distribution co-optimization
• Goal: To improve and provide combined cost reductions for small-scale water and 

energy distribution

1011/24/2025

• Model involves:
• Energy and water resource management

• Local generators and water treatment units
• Renewable generation
• Coupling with main grid and main water distribution 

system (WDS)
• Battery energy storage and water storage tanks
• Residential and commercial water and energy demand

MWEN resource management system diagram
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MWEN Optimization Model
• Day-ahead optimization

• Mixed integer nonlinear programming (MINLP)

• Objective: Minimize total operation costs
• Objective Function: 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑓𝑓𝐸𝐸 + 𝑓𝑓𝑊𝑊

• Power Distribution Cost: 𝑓𝑓𝐸𝐸 = ∆𝑡𝑡 � ∑𝑡𝑡∈𝑇𝑇 ∑𝑔𝑔∈𝐺𝐺 𝐶𝐶𝑔𝑔
𝑁𝑁𝐿𝐿𝐺𝐺𝑢𝑢𝑔𝑔,𝑡𝑡

𝐺𝐺 + 𝐶𝐶𝑔𝑔
𝑂𝑂𝑝𝑝𝐺𝐺𝑃𝑃𝑔𝑔,𝑡𝑡

𝐺𝐺 + 𝐶𝐶𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔+𝑃𝑃𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔+

• Energy costs and cost associated with running generators per hour
• Water Distribution Cost: 𝑓𝑓𝑊𝑊 = ∆𝑡𝑡 � ∑𝑡𝑡∈𝑇𝑇 𝐶𝐶𝑂𝑂𝑝𝑝𝑊𝑊𝑊𝑊𝑊𝑊𝑡𝑡

𝑊𝑊𝑊𝑊 + 𝐶𝐶𝑂𝑂𝑝𝑝𝑊𝑊𝑇𝑇𝑊𝑊𝑡𝑡
𝑊𝑊𝑇𝑇 + 𝐶𝐶𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+𝑊𝑊𝑡𝑡

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+

• Water import cost and costs of running treatment plants per volume of water
• Including operational expenses such as labor, chemicals, and maintenance costs [1], [2]

• System constraints involve microgrid energy management (MEM) elements, and micro 
water management (MWM) elements

1111/24/2025

[1] A. W. Sekandari, “Cost Comparison Analysis of Wastewater Treatment Plants,” IJSTE – International Journal of Science, Technology and Engineering, vol. 6, 2019.
[2] Advisan, “The Cost of Desalination,” [Online]. Available: https://prod-cm.advisian.com/en/global-perspectives/the-cost-of-desalination.
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System Constraints
• MEM system constraints include:

• Generator output limits
• Main grid import limits
• Energy storage limits

• Charging/discharging
• Charge level

• Power Balance
• All power input set to balance out 

combination of power demand and renewable 
generation

1211/24/2025

• MWM system constraints include:
• Water treatment output flow rate limits

• Wastewater and desalination units
• Wastewater also features untreated wastewater 

reservoir capacity limits

• Water treatment power consumption
• Power consumed per output 

flow rate produced
• Water storage system limits

• Water fill up and release
• Water storage level

• “Water Balance”
• Balance of water demand and 

combined flow rate produced 
by water resources
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Water-Energy Interdependence
• Power balance involves power consumption of MWM system

• Power balance constraint: ∑𝑔𝑔∈𝐺𝐺 𝑃𝑃𝑔𝑔,𝑡𝑡
𝐺𝐺 + ∑𝑒𝑒∈𝑆𝑆𝐸𝐸 𝑃𝑃𝑒𝑒,𝑡𝑡

𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑃𝑃𝑒𝑒,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑃𝑃𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔+ = 𝑃𝑃𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 , (∀𝑡𝑡 ∈ 𝑇𝑇)
• Net load: 𝑃𝑃𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑃𝑃𝑡𝑡𝐿𝐿 − 𝑃𝑃𝑡𝑡𝑊𝑊𝑊𝑊 − 𝑃𝑃𝑡𝑡𝑆𝑆𝑆𝑆 + 𝑃𝑃𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀, (∀𝑡𝑡 ∈ 𝑇𝑇)
• MWM power consumption: 𝑃𝑃𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑃𝑃𝑡𝑡𝑊𝑊𝑊𝑊 + 𝑃𝑃𝑡𝑡𝑊𝑊𝑇𝑇 + 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡

𝑊𝑊𝑊𝑊 + 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡
𝑊𝑊𝑇𝑇 + ∑𝑠𝑠∈𝑆𝑆𝑊𝑊 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑠𝑠,𝑡𝑡

𝑆𝑆𝑆𝑆 , (∀𝑡𝑡 ∈ 𝑇𝑇)

• Wastewater: 𝑊𝑊𝑡𝑡
𝑊𝑊𝑊𝑊 = 𝛾𝛾𝑊𝑊𝑊𝑊𝑃𝑃𝑡𝑡𝑊𝑊𝑊𝑊 , (𝑡𝑡 ∈ 𝑇𝑇)

• Water Desalination: 𝑊𝑊𝑡𝑡
𝑊𝑊𝑇𝑇 = 𝛾𝛾𝑊𝑊𝑇𝑇𝑃𝑃𝑡𝑡𝑊𝑊𝑇𝑇 , (𝑡𝑡 ∈ 𝑇𝑇)

• γ represents rate of amount of water treated per unit of energy consumed (e.g., m3/kWh)

1311/24/2025

Power consumption of 
treatment units

Power consumption of output pumps 
of each water resource
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Water Pumps Power Consumption
• Electric power consumption of water pumps can be represented with a quadratic 

relation as a function of water flow rate output
• 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑊𝑊2 + 𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑊𝑊 + 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

• 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐 coefficients are obtained based on properties of the water pumps
• Relationship is known as “pump curve” and data points are provided by manufacturer’s datasheets [1]

• For every water source
• 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡

𝑊𝑊𝑊𝑊 = 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑊𝑊𝑊𝑊 𝑊𝑊𝑡𝑡
𝑊𝑊𝑊𝑊 2 + 𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑊𝑊𝑊𝑊 𝑊𝑊𝑡𝑡

𝑊𝑊𝑊𝑊 + 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑊𝑊𝑊𝑊 𝑢𝑢𝑡𝑡𝑊𝑊𝑊𝑊, (∀𝑡𝑡 ∈ 𝑇𝑇)

• 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡
𝑊𝑊𝑇𝑇 = 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑊𝑊𝑇𝑇 𝑊𝑊𝑡𝑡

𝑊𝑊𝑇𝑇 2 + 𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑊𝑊𝑇𝑇 𝑊𝑊𝑡𝑡
𝑊𝑊𝑇𝑇 + 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑊𝑊𝑊𝑊 𝑢𝑢𝑡𝑡𝑊𝑊𝑇𝑇 , (∀𝑡𝑡 ∈ 𝑇𝑇)

• 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑠𝑠,𝑡𝑡
𝑆𝑆𝑆𝑆 = 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆 𝑊𝑊𝑠𝑠,𝑡𝑡

𝑆𝑆𝑆𝑆𝑆𝑆 2 + 𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆 𝑊𝑊𝑠𝑠,𝑡𝑡
𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆 𝑢𝑢𝑠𝑠,𝑡𝑡

𝑆𝑆𝑆𝑆𝑆𝑆 , (∀𝑠𝑠 ∈ 𝑆𝑆𝑊𝑊, 𝑡𝑡 ∈ 𝑇𝑇)
• Water storage uses a pump to fill up tanks, and a simple valve to release stored water
• Release occurs with normal pressure due to water weight and gravitational force

1411/24/2025

[1] B. Ulanicki, J. Kahler, and B. Coulbeck, “Modeling the efficiency and power characteristics of a pump group,” Journal of Water Resources Planning and Management, vol. 134, no. 1, pp. 88-93, 2008.
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Separate and Combined Operations Comparison

1511/24/2025

Water treatment and pumps power consumption

• MWM meets its water demand using power from main grid
• MWM operation cost function: 𝑓𝑓𝑊𝑊 = ∆𝑡𝑡 � ∑𝑡𝑡∈𝑇𝑇 �

�
𝐶𝐶𝑂𝑂𝑝𝑝𝑊𝑊𝑊𝑊𝑊𝑊𝑡𝑡

𝑊𝑊𝑊𝑊 + 𝐶𝐶𝑂𝑂𝑝𝑝𝑊𝑊𝑊𝑊𝑊𝑊𝑡𝑡
𝑊𝑊𝑊𝑊 +

𝐶𝐶𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+𝑊𝑊𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+ + 𝐶𝐶𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔+ 𝑃𝑃𝑡𝑡𝑊𝑊𝑊𝑊 + 𝑃𝑃𝑡𝑡𝑊𝑊𝑇𝑇 + 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡
𝑊𝑊𝑊𝑊 + 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡

𝑊𝑊𝑇𝑇 + ∑𝑠𝑠∈𝑆𝑆𝑊𝑊 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑠𝑠,𝑡𝑡
𝑆𝑆𝑆𝑆

• Variable price is known by MWM operator
• MEM meets only residential and commercial power demand

• MEM Power Balance: ∑𝑔𝑔∈𝐺𝐺 𝑃𝑃𝑔𝑔,𝑡𝑡
𝐺𝐺 + ∑𝑒𝑒∈𝑆𝑆𝐸𝐸 𝑃𝑃𝑒𝑒,𝑡𝑡

𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑃𝑃𝑒𝑒,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑃𝑃𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔+ = 𝑃𝑃𝑡𝑡𝐿𝐿 − 𝑃𝑃𝑡𝑡𝑊𝑊𝑊𝑊 −
𝑃𝑃𝑡𝑡𝑆𝑆𝑆𝑆 , (∀𝑡𝑡 ∈ 𝑇𝑇)

• Excluding MWM power consumption

• Water-Energy Co-Optimization case: implements MWEN system
• Energy costs of MWM power consumption incur by MEM operator

• Comparison will show combined operation cost reductions

• Benchmark case: separate operation of microgrid energy management (MEM) and 
micro water management (MWM) systems
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Resource Operation Analysis

• Access to local variety of energy resources in the microgrid allows for a more strategic 
economic dispatch

• Water management power consumption profile changes for a more strategic use of energy sources
• Main grid import during peak hours is reduced

1611/24/2025

MWM system power consumption Main grid power import
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Cost Benefit Analysis
Separate Operation Combined MWEN Operation Difference

MEM Op. Cost $298.13 $312.16 $14.03 (4.60%)
MWM Op. Cost $181.86 $160.08 $21.78 (12.74%)

TOTAL $479.99 $472.24 $7.75 (1.63%)

1711/24/2025

Operation costs for separate MEM and MWM operations, as well as combined MWEN operation

• Overall combined operation cost reduction of 1.6%
• Microgrid energy management (MEM) operation costs went up by 4.6%, but micro water 

management (MWM) operation costs went down by 12.7%
• MWM power consumption cost in separate case:

• ∆𝑡𝑡 � ∑𝑡𝑡∈𝑇𝑇 𝐶𝐶𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔+𝑃𝑃𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀 = $19.98

• MEM cost increase represents the new energy costs of MWM power consumption in combined case
• I.e., MWM Power consumption cost: $19.98 → $14.03

• Energy costs of MWM power consumption reduced by 29.8%
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Chapter 2: Summary
• The proposed Micro Water-Energy Nexus (MWEN) operation provides important 

economic benefits
• Water distribution costs related to energy consumption are reduced by 30%

• Research Contribution:
• Expanded cross-utility integration of a variety of water-energy interdependencies

• Energy intensity of different treatment processes
• Wastewater
• Desalination

• Power consumption of water pumps

1811/24/2025

Publications:
• J. Silva-Rodriguez and X. Li, “Water-Energy Co-Optimization for Community-Scale Microgrids,” 2021 

North American Power Symposium (NAPS), College Station, TX, USA, 2021, pp. 1-6, doi: 
10.1109/NAPS52732.2021.9654518.
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Chapter 3
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Network of MWEN Systems
• Networked Micro Water-Energy Nexus (Net-MWEN)

• Multiple individual nearby systems interconnected
• Strategic water and energy distribution
• Collaborative resource exchange to collectively minimize 

operation costs

• Centralized Operation
• All resources are scheduled by central management 

system for optimal sharing among network participants
• Information from all participants communicated through central 

system
• Central Node Topology

2011/24/2025
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Net-MWEN Co-Optimization
• Water-Energy Co-Optimization across multiple networked MWEN systems

• 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∑𝑚𝑚∈𝑀𝑀 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚 = ∑𝑚𝑚∈𝑀𝑀 𝑓𝑓𝐸𝐸,𝑚𝑚 + 𝑓𝑓𝑊𝑊,𝑚𝑚

• Both water and energy distribution follow a central node topology
• All power and water flows through a central bus and junction, respectively

• System assumptions/considerations:
• Trading with main grid and main WDS is less beneficial than trading within the network [1]

• Energy pricing: 𝐶𝐶𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔− ≤ 𝐶𝐶𝑡𝑡

𝑁𝑁𝑁𝑁 ≤ 𝐶𝐶𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔+

• Water pricing: 𝐶𝐶𝑡𝑡𝑁𝑁𝑤𝑤 ≤ 𝐶𝐶𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+

• No water export due to constant water price

2111/24/2025

[1] W. Zhang and Y. Xu, "Distributed Optimal Control for Multiple Microgrids in a Distribution Network," IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 3765-3779, July 2019, DOI: 10.1109/TSG.2018.2834921.
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Proportional Exchange
• Network optimization is executed as a single entity 

system
• Minimizing combined cost of all local MWEN systems as a 

whole
• Individual MWEN exchange cost becomes irrelevant

• May result in solutions that do not benefit all MWEN equally

• Proportional adjustment of power and water exchanges 
among MWEN is needed

• Fair economic benefits to all participants must be achieved
• Overall Net-MWEN minimum cost solution must be preserved

• Proportional Exchange Algorithm (PEA)
• Post-optimization processing balancing power and water 

exchanges based on individual supply and demand needs

2211/24/2025

*Similar for water 
exchange 
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PEA Analysis Results
• Exchanges of electric power among MWEN systems are more balanced when the 

proposed proportional exchange algorithm (PEA) is introduced

2311/24/2025

Network Power Exchanges Without PEA Network Power Exchanges With PEA
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PEA Analysis Results
• Similar results for water exchange among MWEN systems

• More balanced exchange among participants 

2411/24/2025

Network Water Exchanges Without PEA Network Water Exchanges With PEA
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Economic Benefits Results
• There is substantial operation costs reductions for each MWEN system

• An overall combined reduction of 5.4% is achieved

2511/24/2025

MWEN Separate MWEN Cost Combined NetMWEN Cost % Difference
1 $406.43 $396.34 2.48%
2 $1371.85 $1318.83 3.86%
3 $155.55 $120.03 22.84%
4 $-78.44 $-80.02 2.01%

TOTAL $1855.40 $1755.18 5.40%
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Chapter 3: Summary
• A combined operation cost reduction is achieved among all participants compared to 

their separate operation
• The implemented proportional exchange algorithm (PEA) ensures a fair economic 

benefit balance based on individual system import/export needs when main grid and 
water network are a present

• Research Contributions:
• Cross-utility integration across multiple localities
• Network-level operational complexity considering individual economic benefits

2611/24/2025

Publications:
• J. Silva-Rodriguez and X. Li, “Centralized Networked Micro Water-Energy Nexus with Proportional 

Exchange Among Participants,” 2022 North American Power Symposium (NAPS), Salt Lake City, UT, 
USA, 2022, pp. 1-6, doi: 10.1109/NAPS56150.2022.10012160.
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Chapter 4
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Centralized vs. Decentralized Network Operation
• Centralized energy management

• All relevant information of each microgrid at the disposal of a single 
energy management system [1]

• Significant investment to implement control center [2]
• Privacy concerns for network participants [2]

• Decentralized energy management
• Each MG schedules itself separately with minimal information 

sharing with other MGs [1]
• Robustness against communication failures [2]
• Privacy protection of local MG information [2]

• Fully distributed optimization method needed
• Alternating Direction Method of Multipliers (ADMM)

2811/24/2025

Centralized energy management

Decentralized energy management
[1] F. Khavari, A. Badri, A. Zangeneh and M. Shafiekhani, “A comparison of centralized and decentralized energy-management models of multi-microgrid systems,” 
2017 Smart Grid Conference (SGC), Tehran, Iran, 2017, pp. 1-6.
[2] C. Feng, F. Wen, et al., “Decentralized Energy Management of Networked Microgrid Based on Alternating-Direction Multiplier Method,” Energies, vol. 11, 2018.
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Alternating Direction Method of Multipliers (ADMM)
• ADMM is often applied to solve problems where the function optimization can be 

carried out locally, and then coordinated globally via constraints
• For example: interconnection of microgrids into a distribution network to solve a decentralized 

energy-management model

• Network decomposition for ADMM implementation is possible for problems of the 
form [1]:

• 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓 𝑥𝑥 = ∑𝑖𝑖∈𝑁𝑁 𝑓𝑓𝑖𝑖 𝑥𝑥𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 ∑𝑖𝑖∈𝑁𝑁 𝐴𝐴𝑖𝑖𝑥𝑥𝑖𝑖 = 𝑏𝑏

• Then the problem is relaxed with an augmented Lagrangian [1]:
• 𝐿𝐿 𝑥𝑥,𝑦𝑦 = ∑𝑖𝑖∈𝑁𝑁 𝑓𝑓𝑖𝑖 𝑥𝑥 + ∑𝑖𝑖∈𝑁𝑁 𝜆𝜆𝑇𝑇𝐴𝐴𝑖𝑖𝑥𝑥𝑖𝑖 − 𝜆𝜆𝑇𝑇𝑏𝑏 + ρ

2
∑𝑖𝑖∈𝑁𝑁 𝐴𝐴𝑖𝑖𝑥𝑥𝑖𝑖 − 𝑏𝑏 2

2

2911/24/2025

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 10–12, 2011.

Sum of local objective functions

Global constraint

Lagrange Multiplier
Penalty Parameter
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Network of Microgrids Optimization Model
• Optimization model for centralized operation
• Objective function: 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∑𝑚𝑚∈𝑀𝑀 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚

• 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚 = ∑𝑡𝑡∈𝑇𝑇 ∆𝑡𝑡 ∑𝑔𝑔∈𝐺𝐺 𝐶𝐶𝑚𝑚,𝑡𝑡
𝑁𝑁𝑁𝑁𝐺𝐺𝑢𝑢𝑚𝑚,𝑡𝑡

𝐺𝐺 + 𝐶𝐶𝑚𝑚
𝑂𝑂𝑂𝑂𝐺𝐺𝑃𝑃𝑚𝑚,𝑡𝑡

𝐺𝐺 + 𝐶𝐶𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔+𝑃𝑃𝑚𝑚,𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔+ − 𝐶𝐶𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑃𝑃𝑚𝑚,𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔− + 𝐶𝐶𝑡𝑡
𝑁𝑁𝑁𝑁𝑃𝑃𝑚𝑚,𝑛𝑛,𝑡𝑡

𝑁𝑁

• Global Constraint: network power exchanges
• 𝑃𝑃𝑚𝑚,𝑛𝑛,𝑡𝑡

𝑁𝑁 + 𝑃𝑃𝑛𝑛,𝑚𝑚,𝑡𝑡
𝑁𝑁 = 0, (∀𝑚𝑚,𝑛𝑛 ∈ 𝑀𝑀,𝑛𝑛 ≠ 𝑚𝑚, 𝑡𝑡 ∈ 𝑇𝑇)

• The import of microgrid m coming from n must be equal in magnitude to the export of n going to m

• Augmented Lagrangian
• 𝐿𝐿𝜌𝜌 = ∑𝑚𝑚∈𝑀𝑀 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚 + ∑𝑚𝑚∈𝑀𝑀∑𝑡𝑡∈𝑇𝑇 ∑𝑛𝑛∈𝑁𝑁,𝑛𝑛≠𝑚𝑚 𝜆𝜆𝑚𝑚,𝑛𝑛,𝑡𝑡

𝐿𝐿 𝑷𝑷𝒎𝒎,𝒏𝒏,𝒕𝒕
𝑵𝑵 + 𝑷𝑷𝒏𝒏,𝒎𝒎,𝒕𝒕

𝑵𝑵 + 𝜌𝜌
2
𝑷𝑷𝒎𝒎,𝒏𝒏,𝒕𝒕
𝑵𝑵 + 𝑷𝑷𝒏𝒏,𝒎𝒎,𝒕𝒕

𝑵𝑵 2

3011/24/2025

Sum of local objective functions

Power Exchanges between 
microgrid m and microgrid n.

Positive quantity: power import.
Negative quantity: power export.
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ADMM Algorithm for Network of Microgrids

3111/24/2025

Start

Alternating Sequential 
Optimization of each MG

Set 𝑘𝑘 = 1 and all initial 
conditions

Obtain all
𝑃𝑃𝑚𝑚,𝑛𝑛
𝑁𝑁𝑘𝑘+1 for each MG

Update Lagrange 
multiplier 𝜆𝜆𝑚𝑚,𝑛𝑛

𝐿𝐿𝑘𝑘+1
Compute primal and dual 

residuals 𝑟𝑟𝑚𝑚,𝑛𝑛
𝑝𝑝𝑘𝑘+1 and 𝑟𝑟𝑚𝑚,𝑛𝑛

𝑑𝑑𝑘𝑘+1

Check for convergence:

𝑟𝑟𝑝𝑝𝑘𝑘 2
2

+ 𝑟𝑟𝑑𝑑𝑘𝑘 2
2

< 𝜖𝜖𝑇𝑇𝑇𝑇 ?

Next iteration
𝑘𝑘 = 𝑘𝑘 + 1

YES

NO

End
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ADMM Convergence Analysis

3211/24/2025
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Objective-Based Approach

3311/24/2025

In addition to: 

𝑟𝑟𝐿𝐿𝑘𝑘 2
2

+ 𝑠𝑠𝐿𝐿𝑘𝑘 2
2

< 𝜖𝜖𝑇𝑇𝑇𝑇

𝛽𝛽: Average rate of change of the objective value (RoCoOV) threshold.
𝜀𝜀𝑡𝑡𝑡: Feasibility metric threshold for single-node microgrid ADMM formulation.



PhD Dissertation Defense

Standard ADMM vs. OB-ADMM
• Objective-based ADMM (OB-ADMM) 

introduces two new hyperparameters
• 𝑘𝑘𝑠𝑠: Iteration offset

• Number of iterations through which avg. 
solution feasibility and obj. value rate of 
change is analyzed

• 𝛽𝛽: Obj. value rate of change threshold
• Minimum rate of change of objective value in 

the last ks iterations
• Optimality increases with higher ks and 

lower 𝛽𝛽, at the expense of taking more 
iterations

• Higher guarantee of optimality than standard 
ADMM

3411/24/2025

Iteration 
Offset (ks)

Avg. Obj. Value 
Change Threshold (β) Iterations (k)

% Difference 
from Optimal 

Obj. Value
50 0.001 407 0.000 %
50 0.01 374 0.148 %
50 0.1 74 0.103 %
25 0.001 385 0.000 %
25 0.01 305 0.014 %
25 0.1 52 0.121 %

Iterations (k) % Difference from Optimal 
Obj. Value

6 2.290 %

Standard ADMM results

OB-ADMM results

Results for a penalty 𝜌𝜌 = 0.001 and 𝜀𝜀𝑡𝑡𝑡 = 0.01
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Importance of Initial Values for ADMM
• Premise: Closer initial values are to the actual solution may yield higher optimality

3511/24/2025

Penalty (ρ)
Offset 

percentage 
(%)

Standard ADMM OB-ADMM

Iterations (k)
Obj Val % 
Difference

Iterations (k)
Obj Val % 
Difference

0.001

Zero init.
values 25 1.2417 283 0.4876

30 19 0.0999 79 0.0036
20 18 0.0133 45 0.0026
10 27 0.0019 46 0.0004

0.01

Zero init.
values 4 29.878 619 0.8110

30 6 5.0553 98 0.1198
20 17 0.6957 73 0.0792
10 20 0.0603 49 0.0371

0.1

Zero init.
values 13 32.196 2601 1.1709

30 3 7.0544 651 0.1367
20 3 4.3536 435 0.0934
10 5 2.0364 220 0.0485

• However, in a real situation, the 
global optimal solution for the 
network is not known

• Power exchange must be estimated 
as close as possible and used as 
initial values for the ADMM 
algorithm

• Improved optimality
• Lower number of iteration 

when using OB-ADMM
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ADMM ML-Assisted Model Evaluation
• Using a fully connected network (FCN) and a convolutional neural network (CNN)

• Models trained with 4,000 sample cases of different MG net load and grid prices
• 10% of cases for testing and 10% for validation

• 50 additional evaluation cases

• Model Performance

3611/24/2025
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ML-Assisted Method Robustness Analysis

• Substantial optimality improvement compared to simply 
using zero initial values

• Number of iterations improves as well for most penalty 
selections

• OB-ADMM + ML initial value predictions increases final 
optimality and robustness towards penalty value selection

3711/24/2025

Penalty (ρ) FCN 1D-CNN
Obj. Value Iterations Obj. Value Iterations

0.0001 66.748% 14.230% 58.469% -2.145%
0.001 59.420% 7.977% 55.566% 9.784%
0.01 49.340% -0.906% 45.523% 0.814%
0.1 39.546% 36.953% 21.617% 54.449%

Average % improvement of obj. value and iterations for each ML model using OB-ADMM

Absolute obj. value difference from centralized 
benchmark for the 50 additional test cases
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Chapter 4: Summary
• Decentralized approach achieves privacy preservation for MG network participants

• Only communicate power exchange within the network

• Objective-based ADMM provides higher guarantee of global optimal solution
• Coupled with initial value predictions via machine learning (ML), final solution optimality as well as 

algorithm robustness can be further improved

• Research Contributions:
• Decentralized approach preserves autonomy and privacy needed for separate ownership and 

governance of each utility
• Operational complexity is advanced by enhancing ADMM with objective-based and ML approaches

3811/24/2025

Publications:
• Jesus Silva-Rodriguez, Xingpeng Li, Gino Lim, “Privacy-Preserving Networked Microgrid Energy Management via 

Objective-Based ADMM,” Electric Power Systems Research (PSSC Special Issue), 2026, [Under Review].
• Jesus Silva-Rodriguez and Xingpeng Li, “Decentralized Operations of Multi-Microgrid Systems: ML-Enhanced 

ADMM for Improved Optimality,” Applied Energy, 2026, [Under Review].
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Chapter 5

3911/24/2025
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Decentralized Water-Energy Operations
• Current water and electrical systems do not share 

control and operations
• Water and electrical utilities are owned and operated 

separately
• A centralized operation would require both systems to be 

under a single management system

• A decentralized micro water-energy nexus (MWEN) 
would be a more realistic application

• Both systems may retain their autonomy
• Microgrid energy management (MEM)
• Micro water management (MWM)

4011/24/2025

Central 
MWEN

Power 
Dist.

Water 
Dist.

Centralized Management

MEM MWM

Power 
Dist.

Water 
Dist.

Decentralized Management
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ADMM for Decentralized MWEN
• Network decomposition for ADMM is possible in problems of the form:

• 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓 𝑥𝑥 = ∑𝑖𝑖∈𝑁𝑁 𝑓𝑓𝑖𝑖 𝑥𝑥𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 ∑𝑖𝑖∈𝑁𝑁 𝐴𝐴𝑖𝑖𝑥𝑥𝑖𝑖 = 𝑏𝑏

• Two systems (MEM and MWM): 𝑁𝑁 = 2
• 𝑓𝑓1 = 𝑓𝑓𝐸𝐸 and 𝑓𝑓2 = 𝑓𝑓𝑊𝑊

• 𝑓𝑓𝐸𝐸 = ∆𝑡𝑡 � ∑𝑡𝑡∈𝑇𝑇 ∑𝑔𝑔∈𝐺𝐺 𝐶𝐶𝑔𝑔
𝑁𝑁𝐿𝐿𝐺𝐺𝑢𝑢𝑔𝑔,𝑡𝑡

𝐺𝐺 + 𝐶𝐶𝑔𝑔
𝑂𝑂𝑝𝑝𝐺𝐺𝑃𝑃𝑔𝑔,𝑡𝑡

𝐺𝐺 + 𝐶𝐶𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔+𝑃𝑃𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔+

• 𝑓𝑓𝑊𝑊 = ∆𝑡𝑡 � ∑𝑡𝑡∈𝑇𝑇 𝐶𝐶𝑂𝑂𝑝𝑝𝑊𝑊𝑊𝑊𝑊𝑊𝑡𝑡
𝑊𝑊𝑊𝑊 + 𝐶𝐶𝑂𝑂𝑝𝑝𝑊𝑊𝑇𝑇𝑊𝑊𝑡𝑡

𝑊𝑊𝑇𝑇 + 𝐶𝐶𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+𝑊𝑊𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+

• Power balance constraint: ∑𝑔𝑔∈𝐺𝐺 𝑃𝑃𝑔𝑔,𝑡𝑡
𝐺𝐺 + ∑𝑒𝑒∈𝑆𝑆𝐸𝐸 𝑃𝑃𝑒𝑒,𝑡𝑡

𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑃𝑃𝑒𝑒,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑃𝑃𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔+ = 𝑃𝑃𝑡𝑡𝐿𝐿 − 𝑃𝑃𝑡𝑡𝑊𝑊𝑊𝑊 − 𝑃𝑃𝑡𝑡𝑆𝑆𝑆𝑆 +
𝑷𝑷𝒕𝒕𝑴𝑴𝑴𝑴𝑴𝑴, ∀𝑡𝑡 ∈ 𝑇𝑇

• MWM power consumption: 𝑷𝑷𝒕𝒕𝑴𝑴𝑴𝑴𝑴𝑴 = 𝑃𝑃𝑡𝑡𝑊𝑊𝑊𝑊 + 𝑃𝑃𝑡𝑡𝑊𝑊𝑇𝑇 + 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡
𝑊𝑊𝑊𝑊 + 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡

𝑊𝑊𝑇𝑇 + ∑𝑠𝑠∈𝑆𝑆𝑊𝑊 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑠𝑠,𝑡𝑡
𝑆𝑆𝑆𝑆 , (∀𝑡𝑡 ∈ 𝑇𝑇)

4111/24/2025

Global variable
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ADMM for Decentralized MWEN
• Variable Duplication

• MWM power consumption assumed by MEM 
operator: 𝑷𝑷𝑬𝑬,𝒕𝒕

𝑴𝑴𝑴𝑴𝑴𝑴

• MWM power consumption as determined by 
MWM operator itself: 𝑷𝑷𝑾𝑾,𝒕𝒕

𝑴𝑴𝑴𝑴𝑴𝑴

• Global Constraint (i.e., ∑𝑖𝑖∈𝑁𝑁 𝐴𝐴𝑖𝑖𝑥𝑥𝑖𝑖 = 𝑏𝑏)
• 𝑃𝑃𝐸𝐸,𝑡𝑡

𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑃𝑃𝑊𝑊,𝑡𝑡
𝑀𝑀𝑀𝑀𝑀𝑀 = 0

• Relaxing constraint and forming augmented 
Lagrangian for ADMM algorithm:

• 𝐿𝐿𝜌𝜌 = 𝑓𝑓𝐸𝐸 + 𝑓𝑓𝑊𝑊 + ∑𝑡𝑡∈𝑇𝑇 𝜆𝜆𝑡𝑡 𝑃𝑃𝐸𝐸,𝑡𝑡
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 − 𝑃𝑃𝑊𝑊,𝑡𝑡

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 +
𝜌𝜌
2
∑𝑡𝑡∈𝑇𝑇 𝑃𝑃𝐸𝐸,𝑡𝑡

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 − 𝑃𝑃𝑊𝑊,𝑡𝑡
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 2

4211/24/2025

Objective-based approach
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Pump Power Constraints Linearization
• ADMM is a simple but powerful algorithm well suited for distributed convex 

optimization [1]

4311/24/2025

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, “Distributed optimization and statistical learning via the 
alternating direction method of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–24, Jan. 2011.
[2] S. Boyd, L. Vandenberghe, “Convex Optimization,” Cambridge University Press, 7th Edition, pp. 136-138, 2009.
[3] A. Magnani and S. P. Boyd, “Convex piecewise-linear fitting,” Optimize Eng., vol. 10, no. 1, pp. 1–17, 2009.

Piecewise 
linearization

• MWEN Co-Optimization model is not convex
• Water pump’s power consumption equality 

constraints are non-affine functions [2]
• 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑎𝑎𝑊𝑊2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐
• Equation must be convexified

• Piecewise Linearization
• Linearization via heuristics least-squares method [3]

• Fitting multiple linear functions to input data, creating a 
piecewise linear fit

• 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∈ 𝐹𝐹 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏 �𝑣𝑣

• �𝑣𝑣: number of linear functions of the piecewise set 𝐹𝐹
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Standard ADMM vs. OB-ADMM Approach

4411/24/2025

• 𝜀𝜀𝑡𝑡𝑡 = 0.001,𝛽𝛽 = 0.001,𝑘𝑘𝑠𝑠 = 25
Penalty 

ρ

Standard ADMM OB-ADMM
% Difference w/ 

Centralized Iterations (k) % Difference 
w/ Centralized Iterations (k)

0.1 0.05% 5 0.05% 66
1 0.12% 5 0.05% 66

10 0.14% 5 0.07% 253
100 0.14% 5 0.14% 28

Results for MWEN standard and objective-based ADMM
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Test Cases Results
• OB-ADMM is used to solve three different test cases

• Test Case 1: 70 residential units and 3 commercial units, grid-connected
• Test Case 2: 100 residential units and 4 commercial units, grid-connected
• Test Case 3: 60 residential units and 2 commercial units, isolated

4511/24/2025
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Chapter 5: Summary
• The proposed decentralized model is able to obtain a global optimal solution

• Both operation cost and MWM energy consumption converge to the same quantities obtained by 
the centralized model

• Implementing OB-ADMM yielded optimality and convergence robustness compared to 
standard ADMM for MWEN problem

• Research Contributions:
• Micro Water-Energy Nexus formulated for full system privacy and independent operation to 

maintain separate ownership and governance between water and energy systems
• Piecewise linearization of pumps power consumption addresses operational complexities of non-

convex formulation

4611/24/2025

Publications:
• J. Silva-Rodriguez and X. Li, “Decentralized micro water-energy co-optimization for small 

communities,” Electric Power Systems Research, vol. 234, 2024, doi: 10.1016/j.epsr.2024.110611.
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Chapter 6

4711/24/2025
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Micro Water-Energy Co-Optimization

11/24/2025

• Water-Energy Nexus Distribution Network Modeling
• Community-Scale: single-node models with small-scale distributed 

resources
• Distribution-Level: multi-node interconnected system

• Requires physical network modeling
• Power lines

• Power flow
• Thermal limits
• Voltage limits

• Water pipes
• Water pipe flow
• Water flow limits
• Pressure limits

• Modeling of additional interdependencies between distribution systems
• Water demand of electricity resources
• Power demand of water resources

Water consumption for 
hydrogen production

Power consumption of water 
treatment
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• Power flow for radial distribution networks [1]
• Second-order cone relaxation (SOCR) [2]

• ∑𝑖𝑖∈𝑁𝑁𝑢𝑢 𝑗𝑗 𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡
𝑙𝑙 − 𝐼𝐼𝑖𝑖𝑖𝑖,𝑡𝑡

2𝑅𝑅𝑖𝑖𝑖𝑖 = ∑𝑖𝑖𝑖𝑖𝑁𝑁𝑑𝑑 𝑗𝑗 𝑃𝑃𝑗𝑗𝑗𝑗𝑙𝑙 + 𝑃𝑃𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑃𝑃𝑗𝑗
𝑔𝑔𝑔𝑔𝑔𝑔 , ∀𝑗𝑗 ∈ 𝑁𝑁, 𝑡𝑡 ∈ 𝑇𝑇

• ∑𝑖𝑖∈𝑁𝑁𝑢𝑢 𝑗𝑗 𝑄𝑄𝑖𝑖𝑖𝑖,𝑡𝑡
𝑙𝑙 − 𝐼𝐼𝑖𝑖𝑖𝑖,𝑡𝑡

2𝑋𝑋𝑖𝑖𝑖𝑖 = ∑𝑖𝑖𝑖𝑖𝑁𝑁𝑑𝑑 𝑗𝑗 𝑄𝑄𝑗𝑗𝑗𝑗𝑙𝑙 + 𝑄𝑄𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑄𝑄𝑗𝑗
𝑔𝑔𝑔𝑔𝑔𝑔 , ∀𝑗𝑗 ∈ 𝑁𝑁, 𝑡𝑡 ∈ 𝑇𝑇

• �𝑉𝑉𝑗𝑗,𝑡𝑡
2 = �𝑉𝑉𝑖𝑖,𝑡𝑡

2 − 2 𝑅𝑅𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡
𝑙𝑙 + 𝑋𝑋𝑖𝑖𝑖𝑖𝑄𝑄𝑖𝑖𝑖𝑖,𝑡𝑡

𝑙𝑙 + 𝑅𝑅𝑖𝑖𝑖𝑖
2 + 𝑋𝑋𝑖𝑖𝑖𝑖

2 𝐼𝐼𝑖𝑖𝑖𝑖,𝑡𝑡
2 , ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁, 𝑡𝑡 ∈ 𝑇𝑇

• 𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡
𝑙𝑙 2

+ 𝑄𝑄𝑖𝑖𝑖𝑖,𝑡𝑡
𝑙𝑙 2

= 𝐼𝐼𝑖𝑖𝑖𝑖,𝑡𝑡
2 �𝑉𝑉𝑖𝑖,𝑡𝑡

2 , ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁, 𝑡𝑡 ∈ 𝑇𝑇
• Making this an inequality creates a convex solution space rather than a tight nonconvex space.
• However, this is a relaxation

• Expanded solution space involves new points not feasible in original model
• Inequality must be as close to equality as possible to reflect a real and possible solution

4911/24/2025

Distribution System Power Flow (DistFlow) [1]

[1] M. Baran and F. F. Wu, Optimal sizing of capacitors placed on a radial distribution system,” IEEE Transactions on Power Delivery, vol. 4, no. 1, pp. 735-743, Jan. 1989.
[2] A. Alizadeh, M. A. Allam, B. Cao, I. Kamwa, M. Xu, “On the application of the branch DistFlow using second-order conic programming in microgrids,” Electric Power Systems Research, vol. 245, 2025.

≤



PhD Dissertation Defense 5011/24/2025

Water Pipe Flow Constraints
• Nodal pressure difference as a function of water flow rate [1]

• 𝑝𝑝𝑖𝑖,𝑡𝑡 − 𝑝𝑝𝑗𝑗,𝑡𝑡 = 𝑟𝑟𝑖𝑖,𝑗𝑗𝑙𝑙 𝑊𝑊𝑖𝑖,𝑗𝑗,𝑡𝑡
𝑙𝑙 2

, ∀ 𝑖𝑖, 𝑗𝑗 = 1,2, … , 𝐽𝐽, 𝑡𝑡 ∈ 𝑇𝑇
• Darcy-Weisbach equation for incompressible fluids

• Resistance factor rl is also a function of water flow rate
• 𝑟𝑟 = 𝑓𝑓𝐷𝐷

8𝜌𝜌𝑤𝑤𝐿𝐿
𝜋𝜋2𝐷𝐷5

• Where 𝑓𝑓𝐷𝐷 = 1.325

𝑙𝑙𝑙𝑙 𝜀𝜀
3.7𝐷𝐷+

5.74
𝑅𝑅𝑅𝑅0.9

2

• Reynolds number Re depends on water flow rate within the pipe

• 𝑅𝑅𝑅𝑅 = 4𝑊𝑊𝑙𝑙𝜌𝜌𝑤𝑤
𝜋𝜋𝜋𝜋𝜋

• Thus, we have
• 𝑝𝑝𝑖𝑖,𝑡𝑡 − 𝑝𝑝𝑗𝑗,𝑡𝑡 =

10.6𝜌𝜌𝑤𝑤𝐿𝐿𝑖𝑖,𝑗𝑗

𝜋𝜋2𝐷𝐷5 𝑙𝑙𝑙𝑙 𝜀𝜀
3.7𝐷𝐷+

5.74

4𝑊𝑊𝑖𝑖𝑖𝑖
𝑙𝑙 𝜌𝜌𝑤𝑤
𝜋𝜋𝜋𝜋𝜋

0.9
2 � 𝑊𝑊𝑖𝑖𝑖𝑖

𝑙𝑙 2

[1] P. R. Simpson, & S. Elhay, “Formulating the water distribution system equations in terms of heads and velocity,” 10th Annual 
Symposium on Water Distribution Systems Analysis, 2008. 

𝑝𝑝𝑖𝑖 𝑝𝑝𝑗𝑗𝐷𝐷

𝐿𝐿𝑖𝑖,𝑗𝑗

𝑊𝑊𝑖𝑖,𝑗𝑗
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• Water pipe flow can be approximated as a quadratic expression
• 𝑝𝑝𝑖𝑖,𝑡𝑡−𝑝𝑝𝑗𝑗,𝑡𝑡

𝐿𝐿𝑖𝑖𝑖𝑖
= 𝑓𝑓(𝑊𝑊)

• Assuming commercial steel pipes of 2-in diameters with a 
maximum flow rate of 10.23 m3/h [1], [2]

• 𝑓𝑓 𝑊𝑊 = 4.8570 × 107 𝑊𝑊2 + 1.6210 × 104 𝑊𝑊 𝑁𝑁
𝑚𝑚3

• For 10,000 points plotted of original expression, an R2 of 0.9998 is reached
• This approximation requires absolute value of flow rate W

• No direction is captured
• Quadratic equality constraint:

5111/24/2025

Darcy-Weisbach Quadratic Approximation

• 𝑝𝑝𝑖𝑖,𝑡𝑡−𝑝𝑝𝑗𝑗,𝑡𝑡

𝐿𝐿𝑖𝑖,𝑗𝑗
= 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡 4.8570 × 107 𝑊𝑊𝑖𝑖,𝑗𝑗,𝑡𝑡

𝑙𝑙 2
+ 1.6210 × 104 𝑊𝑊𝑖𝑖,𝑗𝑗,𝑡𝑡

𝑙𝑙 , ∀𝑖𝑖, 𝑗𝑗 = 1, … , 𝐽𝐽, 𝑡𝑡 ∈ 𝑇𝑇

• 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡 ∈ −1,1 : integer variable to represent flow direction
*Wl must be in m3/s (SI units) for this expression to be dimensionally correct
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• Leveraging the same second order cone relaxation (SOCR) approach for DistFlow
• Derived quadratic constraint can be relaxed as an inequality

• 𝑝𝑝𝑖𝑖,𝑡𝑡 − 𝑝𝑝𝑗𝑗,𝑡𝑡 ≥ 𝐿𝐿𝑖𝑖,𝑗𝑗 4.8570 × 107 𝑊𝑊𝑖𝑖,𝑗𝑗,𝑡𝑡
𝑙𝑙 2

+ 1.6210 × 104 𝑊𝑊𝑖𝑖,𝑗𝑗,𝑡𝑡
𝑙𝑙 − 1 − 𝑦𝑦𝑖𝑖,𝑗𝑗,𝑡𝑡 𝑀𝑀 , ∀𝑖𝑖, 𝑗𝑗 ∈ 𝐽𝐽, 𝑖𝑖 < 𝑗𝑗, 𝑡𝑡 ∈ 𝑇𝑇

• 𝑝𝑝𝑗𝑗,𝑡𝑡 − 𝑝𝑝𝑖𝑖,𝑡𝑡 ≥ 𝐿𝐿𝑖𝑖,𝑗𝑗 4.8570 × 107 𝑊𝑊𝑖𝑖,𝑗𝑗,𝑡𝑡
𝑙𝑙 2

+ 1.6210 × 104 𝑊𝑊𝑖𝑖,𝑗𝑗,𝑡𝑡
𝑙𝑙 − 𝑦𝑦𝑖𝑖,𝑗𝑗,𝑡𝑡𝑀𝑀 , ∀𝑖𝑖, 𝑗𝑗 ∈, 𝐽𝐽, 𝑖𝑖 < 𝑗𝑗, 𝑡𝑡 ∈ 𝑇𝑇

• 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡 = 1 − 2𝑦𝑦𝑖𝑖,𝑗𝑗,𝑡𝑡 , ∀𝑖𝑖, 𝑗𝑗 ∈, 𝐽𝐽, 𝑖𝑖 < 𝑗𝑗, 𝑡𝑡 ∈ 𝑇𝑇
• 𝑦𝑦𝑖𝑖,𝑗𝑗,𝑡𝑡: Binary auxiliary variable to help define flow direction 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡

• “BigM” method is used to establish constraints to ensure flow direction
• Note that 𝑊𝑊𝑖𝑖,𝑗𝑗,𝑡𝑡

𝑙𝑙 ≥ 0

• Water balance must be updated to correctly account for water flow into and out of each junction 
node i

• 𝑊𝑊𝑖𝑖,𝑡𝑡
𝑊𝑊𝑊𝑊 + 𝑊𝑊𝑖𝑖,𝑡𝑡

𝑊𝑊𝑊𝑊 − ∑𝑗𝑗∈𝐽𝐽,𝑖𝑖<𝑗𝑗 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡𝑊𝑊𝑖𝑖,𝑗𝑗,𝑡𝑡
𝑙𝑙 + ∑𝑗𝑗∈𝐽𝐽,𝑗𝑗<𝑖𝑖 𝐴𝐴𝑗𝑗,𝑖𝑖,𝑡𝑡𝑊𝑊𝑗𝑗,𝑖𝑖,𝑡𝑡

𝑙𝑙 + 𝑊𝑊𝑖𝑖,𝑡𝑡
𝑆𝑆𝑆𝑆𝑆𝑆 −𝑊𝑊𝑖𝑖,𝑡𝑡

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑊𝑊𝑖𝑖,𝑡𝑡
𝐿𝐿 , ∀𝑖𝑖 ∈ 𝐽𝐽, 𝑡𝑡 ∈ 𝑇𝑇

5211/24/2025

Water Pipe Flows SOCR
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Centralized Benchmark Solution
• Objective function

• 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑓𝑓𝐸𝐸 + 𝑓𝑓𝑊𝑊 = ∑𝑡𝑡∈𝑇𝑇 ∆𝑡𝑡 � �
�

∑𝑖𝑖∈𝑁𝑁 �
�

𝐶𝐶𝑖𝑖
𝐺𝐺𝑂𝑂𝑂𝑂𝑃𝑃𝑖𝑖,𝑡𝑡𝐺𝐺 + 𝐶𝐶𝑖𝑖

𝐺𝐺𝑁𝑁𝑁𝑁𝑢𝑢𝑖𝑖,𝑡𝑡𝐺𝐺 + 𝐶𝐶𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔+𝑃𝑃𝑖𝑖,𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔+ +
Ω𝑙𝑙 ∑𝑗𝑗∈𝑁𝑁,𝑗𝑗≠𝑖𝑖 𝐼𝐼𝑖𝑖,𝑗𝑗,𝑡𝑡

𝑠𝑠 𝑅𝑅𝑖𝑖,𝑗𝑗 + ∑𝑖𝑖∈𝐽𝐽 𝐶𝐶𝑖𝑖
𝑂𝑂𝑝𝑝𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖,𝑡𝑡

𝑊𝑊𝑊𝑊 + 𝐶𝐶𝑖𝑖
𝑂𝑂𝑝𝑝𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖,𝑡𝑡

𝑊𝑊𝑊𝑊 + Ω𝑝𝑝 ∑𝑖𝑖,𝑗𝑗∈𝐽𝐽,𝑖𝑖<𝑗𝑗 2𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡 − 𝑝𝑝𝑖𝑖,𝑡𝑡 − 𝑝𝑝𝑗𝑗,𝑡𝑡

• Optimal SOCR penalization weight parameters
• Using Optuna [1], a Python-based open source hyperparameter optimization framework, a combination of 
Ω𝑙𝑙 and Ω𝑝𝑝 is obtained for optimal objective value, SOCR error, and computation time

• Optimal weight parameters:
• Ω𝑙𝑙 = 15
• Ω𝑝𝑝 = 0.1
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DistWEN centralized benchmark solution with and without SOCR penalizations
Weight 

Parameters
Objective 

Value
Optimal Cost [$] Line Current SOCR RMSE [A2]

Nodal Linear Pressure 
Difference SOCR RMSE [MPa]

Computation Time [s]

Zero 1403.17 1403.17 16.975 1.1867 32.315
Optimal 1405.89 1403.16 1.1234E-5 1.4057E-6 46.764

[1] T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, “Optuna: A Next-generation Hyperparameter Optimization Framework,” Proceedings of the 25th ACM DIGKDD International Conference on Knowledge Discovery and Data Mining, Association 
for Computing Machinery, New York, NY, 2019.
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DistWEN Model Decentralization
• Model Interdependencies (i.e., global constraints):

• Active power demand at every node:
• 𝑃𝑃𝑖𝑖,𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑃𝑃𝑖𝑖,𝑡𝑡𝐿𝐿 − 𝑃𝑃𝑖𝑖,𝑡𝑡𝑊𝑊𝑊𝑊 − 𝑃𝑃𝑖𝑖,𝑡𝑡𝑆𝑆𝑆𝑆 − 𝑃𝑃𝑖𝑖,𝑡𝑡𝐺𝐺 − 𝑃𝑃𝑖𝑖,𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑃𝑃𝑖𝑖,𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑃𝑃𝑖𝑖,𝑡𝑡𝑊𝑊𝑊𝑊 + 𝑃𝑃𝑖𝑖,𝑡𝑡𝑊𝑊𝑊𝑊 + 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖,𝑡𝑡

𝑊𝑊𝑊𝑊 + 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖,𝑡𝑡
𝑊𝑊𝑊𝑊 + 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖,𝑡𝑡

𝑆𝑆𝑆𝑆 ,∀𝑖𝑖 ∈ 𝑁𝑁, 𝑡𝑡 ∈ 𝑇𝑇
• Reactive power demand at every node:

• 𝑄𝑄𝑖𝑖,𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑄𝑄𝑡𝑡𝐿𝐿 − 𝑄𝑄𝑡𝑡𝑊𝑊𝑊𝑊 − 𝑄𝑄𝑡𝑡𝑆𝑆𝑆𝑆 − 𝑄𝑄𝑖𝑖,𝑡𝑡𝐺𝐺 − 𝑄𝑄𝑖𝑖,𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑄𝑄𝑖𝑖,𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑄𝑄𝑖𝑖,𝑡𝑡𝑊𝑊𝑊𝑊 + 𝑄𝑄𝑖𝑖,𝑡𝑡𝑊𝑊𝑊𝑊 + 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖,𝑡𝑡
𝑊𝑊𝑊𝑊 + 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖,𝑡𝑡

𝑊𝑊𝑊𝑊 + 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖,𝑡𝑡
𝑆𝑆𝑆𝑆 ,∀𝑖𝑖 ∈ 𝑁𝑁, 𝑡𝑡 ∈ 𝑇𝑇

• Water balance:
• 𝑊𝑊𝑖𝑖,𝑡𝑡

𝑊𝑊𝑊𝑊 + 𝑊𝑊𝑖𝑖,𝑡𝑡
𝑊𝑊𝑊𝑊 − ∑𝑗𝑗∈𝐽𝐽,𝑖𝑖<𝑗𝑗 𝐹𝐹𝑖𝑖,𝑗𝑗,𝑡𝑡 + ∑𝑗𝑗∈𝐽𝐽,𝑗𝑗<𝑖𝑖 𝐹𝐹𝑗𝑗,𝑖𝑖,𝑡𝑡 + 𝑊𝑊𝑖𝑖,𝑡𝑡

𝑆𝑆𝑆𝑆𝑆𝑆 −𝑊𝑊𝑖𝑖,𝑡𝑡
𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑊𝑊𝑖𝑖,𝑡𝑡

𝐿𝐿 + 𝑊𝑊𝑖𝑖,𝑡𝑡
𝐸𝐸𝐸𝐸 ,∀𝑖𝑖 ∈ 𝐽𝐽, 𝑡𝑡 ∈ 𝑇𝑇

• 𝐹𝐹𝑖𝑖,𝑗𝑗,𝑡𝑡 = 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡𝑊𝑊𝑖𝑖,𝑗𝑗,𝑡𝑡
𝑙𝑙 ,∀𝑖𝑖, 𝑗𝑗 ∈ 𝐽𝐽, 𝑖𝑖 < 𝑗𝑗, 𝑡𝑡 ∈ 𝑇𝑇
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Global Variable Definitions
• Additional auxiliary variables defined to facilitate decentralization

• Active power consumption of WDN:
• 𝑃𝑃𝑖𝑖,𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑃𝑃𝑖𝑖,𝑡𝑡𝑊𝑊𝑊𝑊 + 𝑃𝑃𝑖𝑖,𝑡𝑡𝑊𝑊𝑊𝑊 + 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖,𝑡𝑡

𝑊𝑊𝑊𝑊 + 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖,𝑡𝑡
𝑊𝑊𝑊𝑊 + 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖,𝑡𝑡

𝑆𝑆𝑆𝑆 ,∀𝑖𝑖 ∈ 𝑁𝑁, 𝑡𝑡 ∈ 𝑇𝑇
• Reactive power consumption of WDN:

• 𝑄𝑄𝑖𝑖,𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑄𝑄𝑖𝑖,𝑡𝑡𝑊𝑊𝑊𝑊 + 𝑄𝑄𝑖𝑖,𝑡𝑡𝑊𝑊𝑊𝑊 + 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖,𝑡𝑡
𝑊𝑊𝑊𝑊 + 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖,𝑡𝑡

𝑊𝑊𝑊𝑊 + 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖,𝑡𝑡
𝑆𝑆𝑆𝑆 ,∀𝑖𝑖 ∈ 𝑁𝑁, 𝑡𝑡 ∈ 𝑇𝑇

• Water consumption of PDN:
• 𝑊𝑊𝑖𝑖,𝑡𝑡

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑊𝑊𝑖𝑖,𝑡𝑡
𝐸𝐸𝐸𝐸 ,∀𝑖𝑖 ∈ 𝐽𝐽, 𝑡𝑡 ∈ 𝑇𝑇

• Variable duplication
• Global variables are duplicated, with each duplicate declared by each system

• 𝑃𝑃𝐸𝐸,𝑖𝑖,𝑡𝑡
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑃𝑃𝑊𝑊,𝑖𝑖,𝑡𝑡

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ,∀𝑖𝑖 ∈ 𝑁𝑁, 𝑡𝑡 ∈ 𝑇𝑇
• 𝑄𝑄𝐸𝐸,𝑖𝑖,𝑡𝑡

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑄𝑄𝑊𝑊,𝑖𝑖,𝑡𝑡
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ,∀𝑖𝑖 ∈ 𝑁𝑁, 𝑡𝑡 ∈ 𝑇𝑇

• 𝑊𝑊𝐸𝐸,𝑖𝑖,𝑡𝑡
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑊𝑊𝑊𝑊,𝑖𝑖,𝑡𝑡

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,∀𝑖𝑖 ∈ 𝐽𝐽, 𝑡𝑡 ∈ 𝑇𝑇

5511/24/2025

Global constraints to be relaxed for ADMM 
implementation
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DistWEN ADMM Convergence Criteria
• Primal and Dual residuals are defined as usual

• For a problem with a  global constraint of the form:
• 𝑥𝑥𝑖𝑖 = 𝑧𝑧𝑖𝑖

• Primal Residual:
• 𝑟𝑟𝑝𝑝𝑘𝑘+1 = ∑𝑖𝑖∈𝑁𝑁 𝑥𝑥𝑖𝑖𝑘𝑘+1 − 𝑧𝑧𝑖𝑖

𝑘𝑘+1

• Dual Residual:
• 𝑟𝑟𝑑𝑑𝑘𝑘+1 = ∑𝑖𝑖∈𝑁𝑁 𝑥𝑥𝑖𝑖𝑘𝑘+1 − 𝑧𝑧𝑖𝑖

𝑘𝑘+1 + 𝑧𝑧𝑖𝑖
𝑘𝑘 − 𝑥𝑥𝑖𝑖𝑘𝑘

• Two feasibility metrics are used to check for convergence
• WDN Power consumption feasibility:

• 𝜀𝜀𝑃𝑃𝑃𝑃𝑘𝑘 = 𝑟𝑟𝑝𝑝𝑃𝑃𝑘𝑘 , 𝑟𝑟𝑝𝑝𝑄𝑄𝑘𝑘
2

2
+ 𝑟𝑟𝑑𝑑𝑃𝑃𝑘𝑘 , 𝑟𝑟𝑑𝑑𝑄𝑄

𝑘𝑘

2

2

• PDN Water consumption feasibility:

• 𝜀𝜀𝑊𝑊𝑘𝑘 = 𝑟𝑟𝑝𝑝𝑊𝑊𝑘𝑘
2
2

+ 𝑟𝑟𝑑𝑑𝑊𝑊𝑘𝑘

2

2
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ADMM algorithm for Decentralized DistWEN Model
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Optimality and Error Minimization

• Near-optimal results achieve, with < 0.6% deviation from centralized benchmark solution
• Best optimality obtained with 𝜌𝜌𝑊𝑊 = 5 × 105, yielding lowest line current SOCR error, but highest 

nodal pressure difference SOCR error
• Hence, effective decentralization of DistWEN co-optimization is achieved

• However, further refinement may be beneficial to reduce SOCR errors, as well as increased optimality

5711/24/2025
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Convergence Behavior
• Objective value converges in an oscillatory 

manner
• Consequence of using an optimality gap of 0.1%

• Necessary to keep computation time reasonable for every 
ADMM iteration

• This hinders the possibility of properly tracking the rate 
of change of the obj. value (RoCoOV)

• That is, objective-based ADMM cannot be applied as currently 
defined

• Nonetheless, obj. value is converging towards optimum
• Standard ADMM still effective

• OB-ADMM would require further research for implementation

5811/24/2025
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Chapter 6: Summary
• Research Contributions:

• Effectively convexified distribution-level water-energy nexus (DistWEN) co-optimization 
model, addressing operational complexities of the original model

• Now compatible with decentralized algorithms
• Decentralized DistWEN model enabled coordinated operation of a power distribution 

network (PDN) and a water distribution network (WDN) without full system integration 
and data sharing, preserving their separate ownership and governance

• Decentralized operation closely matched that of the centralized model with at most 0.6% deviation
• Full cross-utility integration implemented by coupling systems via power consumption of 

the WDN and water consumption of the PDN

5911/24/2025
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Contributions
1. Developed micro water-energy nexus (MWEN) co-optimization model, reducing total costs 

with combined operation vs. separate operation
2. Extended MWEN concept to networked operations of MWEN systems and introduced a 

proportional exchange algorithm for fair economic benefit allocation
3. Proposed and formulated an objective-based ADMM (OB-ADMM) for decentralized 

microgrid energy management with improved optimality results
4. Applied OB-ADMM to enable privacy-preserving decentralized MWEN co-optimization
5. Formulated a convex distribution-level water-energy nexus (DistWEN) co-optimization 

model integrating water and power distribution network operations
6. Implemented a decentralized DistWEN model via ADMM, achieving results with low 

deviation from optimal results of centralized model

6111/24/2025
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Future Work
• Immediate Next Steps:

• Improve decentralized DistWEN formulation to reduce SOCR feasibility errors, improve final optimality, 
and enhance convergence checks

• Potentially consider dynamic optimality gap, integer relaxations, and/or machine-learning initial value 
predictions/binary states predictions

• Explore adaptive or automated penalty update strategies to improve ADMM performance
• Including dynamic adjustment of SOCR penalization weight parameters

• Long-Term Next Steps:
• Incorporate uncertainty modeling (e.g., stochastic programming or robust optimization) into the co-

optimization framework
• For prediction of demands, renewable generation, and water availability

• Extend decentralized DistWEN concept to multi-utility/multi-resource co-ordination with broader 
scalability and infrastructure interconnection

• Incorporate natural gas, hydrogen, or even transportation
• Investigate market mechanisms and pricing schemes for interconnected multi-resource systems

6211/24/2025
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Additional Projects
• Lunar Surface Power System Project | Oct. 2022 – Oct. 2023

• Support from: NASA, EPRI, CenterPoint Energy
• Design analyses for ARTEMIS south polar lunar surface power system

• Energy Flexibility Technology Survey Study | Nov. 2023 – Nov. 2024
• Support from: Shell International
• Comprehensive review of energy flexible technologies across generators, loads, 

and energy storage systems

• Cable Degradation and Remaining Useful Life Prediction for Proactive 
Cable Replacement | Mar. 2024 – May 2025

6311/24/2025

• Support from: DOE, CenterPoint Energy
• Data-driven framework for EV load projection and 

resulting thermal cable degradation for proactive cable 
replacement planning
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