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Chapter 1
Introduction
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Power System Network
• Transitioned from a centralized model with 

power flowed unidirectionally to bidirectional 
exchange of power.

• Substantial congested lines due to increase in 
both generation and demand
• Generation: increase in renewable project 

at both transmission and distribution 
level.

• Demand: electrification of vehicle and 
data center investment.

• It is a challenge to operate the grid reliably 
and securely with a severely constrained 
network.

Source: K. Waehner, "The State of Data Streaming for Energy & Utilities," [Online]. Available: https://www.kai-waehner.de/blog/2023/09/01/the-state-of-data-streaming-for-energy-utilities-in-
2023/.
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Optimal Power Flow (OPF)

• To operate a reliable and secure grid, 
ISOs use different methods/strategies 
to control and regulate the electrical 
grid at different time scales.

• For real-time market, OPF determines 
the best operating points for online 
units while meeting demands and 
respecting other physical and reliability 
constraints.

• Due to the increased in congestion of 
the network, it is a challenge to solve 
OPF within a short timeframe for its 
real-time application.

Source: Makarov, Y. V., Etingov, P. V., Ma, J., Huang, Z., & Subbarao, K. (2011). Incorporating uncertainty of wind power generation forecast into power system operation, dispatch, and unit 
commitment procedures. IEEE Transactions on Sustainable Energy, 2(4), 433-442.

(Optimal Power Flow)
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Graph Neural Network (GNN)
• GNN is designed for network-structured data.

 Utilize topology of the network as additional input features.
 Usage of adjacency matrix (nb by nb)*.
 Apply global context of the network during the training process.

• Applications of GNN in power system has been very limited.
 Most GNN models focused on forecasting:

 E.g., wind power prediction, or solar irradiation prediction.
 Few GNN applications in the decision-making processes of power system.

Adjacency Matrix
0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

*nb = number of bus
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Graph Neural Network
• Forward propagation rule for GNN:

ℎ𝑖𝑖
𝑘𝑘 = 𝜎𝜎(𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑘𝑘 � ℎ𝑖𝑖
𝑘𝑘−1 + 𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑘𝑘 � 𝐴𝐴𝐴𝐴𝐴𝐴(ℎ𝑗𝑗
𝑘𝑘−1 ,∀𝑗𝑗 ∈ Ω𝑖𝑖))

• The equation describes the relationship between each node and its neighboring 
nodes in each forward pass of the training stage.

– where 𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑘𝑘 and 𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑘𝑘 are node-wise shared weight matrices

– 𝑨𝑨𝑨𝑨𝑨𝑨(ℎ𝑗𝑗𝑘𝑘−1,∀𝑗𝑗 ∈ Ω𝑖𝑖) is an aggregation function that combines feature information over all neighbor 
nodes (Ω𝑖𝑖)

Source: Sanchez-Lengeling, et al., "A Gentle Introduction to Graph Neural Networks", Distill, 2021.
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Graph Neural Network

• GNN works with message passing between each layer of the neural network.
– For each node in the graph, gather all the neighboring node/edge embeddings (messages)
– Aggregate all messages via an aggregate function
– All messages are passed through an update function

Source: Sanchez-Lengeling, et al., "A Gentle Introduction to Graph Neural Networks", Distill, 2021.
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Chapter 2
Optimal Power Flow based on 
Graph Neural Network  
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Optimal Power Flow (OPF)

• OPF is a constrained optimization problem that includes:
• Variables (generation cost, load profiles…)
• Constraints (line rating limit, generation limit…)
• Objectives (minimum cost)

• It determines the dispatch of generating units to satisfy the electricity 
demand at the minimum cost while complying with the technical limits 
of the system.

• Computationally expensive for real time operations of the power system.
• Simplify the original model to speed up computing time.
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Optimal Power Flow

• Objective Function:

• Constraints:

𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑔𝑔∈𝐺𝐺

𝑐𝑐𝑔𝑔𝑃𝑃𝑔𝑔

𝑃𝑃𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑃𝑃𝑔𝑔 ≤ 𝑃𝑃𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 ,  𝑔𝑔 ∈ 𝐺𝐺 Generation Constraints

𝑃𝑃𝑘𝑘 = 𝜃𝜃𝑓𝑓(𝑘𝑘) − 𝜃𝜃𝑡𝑡(𝑘𝑘) /𝑥𝑥𝑘𝑘 , 𝑘𝑘 ∈ 𝐾𝐾 Line Flow Equation

−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘 ≤ 𝑃𝑃𝑘𝑘 ≤ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘 , 𝑘𝑘 ∈ 𝐾𝐾 Line Limit Constraints
∑𝑔𝑔∈𝐺𝐺(𝑛𝑛)𝑃𝑃𝑔𝑔 + ∑𝑘𝑘∈𝐾𝐾(𝑛𝑛−)𝑃𝑃𝑘𝑘 − ∑𝑘𝑘∈𝐾𝐾(𝑛𝑛+)𝑃𝑃𝑘𝑘 = 𝑑𝑑𝑛𝑛 , 𝑛𝑛 ∈ 𝑁𝑁 Nodal Balance Equation

G is a set of generators
K is a set of lines
N is a set of buses
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Loading Threshold for Congested Lines

• Define loading threshold as a percentage of the line rating limit.
• Based on the threshold, we will label these lines as heavily loaded or congested.
• Only need to monitor a subset of congested lines which leads to a reduced OPF 

problem while still maintaining solution quality.
• Ex: 80% threshold for line rating limit of 100 MW
• If line flow is above 80 MW => heavily loaded/congested
• If line flow is below 80 MW => normal

−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘 ≤ 𝑃𝑃𝑘𝑘 ≤ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘 𝑘𝑘 ∈ 𝐾𝐾
−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟 ≤ 𝑃𝑃𝑟𝑟 ≤ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟 𝑟𝑟 ∈ 𝑅𝑅

R is a set of heavily loaded or congested lines.
R is a subset of K that includes all lines.
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Literature Review

• Use GNN to directly predict the dispatch of the generators[1].
 did not account for power flow and ignore the line rating limit in its 

formulation of the OPF problem.
• Convolutional neural network was built to predict generation dispatch using 

given load profiles [2].
• Neural network model was used to predict generations from load inputs for 

OPF [3].
 Both [2] and [3] did not consider topology of the network result in 

lower performances from both models.

References:
1) D. Owerko, F. Gama and A. Ribeiro, "Optimal Power Flow Using Graph Neural Networks," in ICASSP, 2020.
2) K. Yang, W. Gao and R. Fan, "Optimal Power Flow Estimation Using One-Dimensional Convolutional Neural Network," in North American Power Symposium, College Station, 2021.
3) X. Pan, T. Zhao, M. Chen and S. Zhang, "DeepOPF: A Deep Neural Network Approach for Security-Constrained DC Optimal Power Flow," IEEE Transactions on Power Systems, vol. 36, no. 3,

pp. 1725 - 1735, May 2021
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Proposed Method for Reduced Optimal Power Flow (ROPF)
• Motivation:
 Apply ML to improve/speed up computing time for OPF.

• Propose approach:
 Use GNN to predict heavily loaded or congested lines.
 Eliminate non-congested lines to reduce the number of 

variables & constraints in the original OPF model.
 Less variables & constraints will lead to faster 

computing time.
 Challenges:

− Feasible solution
− Accuracy of prediction in relation to total cost and 

constraints violation
Flowchart for ROPF using GNN
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Machine Learning Models Comparison

Benchmark NN 
Model

Proposed GNN 
Model

Benchmark CNN 
Model

• Evaluate effectiveness of GNN
compared to typical ML models 
including:
• Fully-connected Neural Network (NN).
• Convolutional Neural Network (CNN). 

• Analyze the results using different 
metrics, such as:
• Computing time.
• Percent error.
• Constraint violation.
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Results: Percent Error

  70% 75% 80% 85% 90% 95% 
NN 1.76 2.29 2.12 2.50 2.86 3.18 
CNN 1.67 2.37 1.99 2.53 2.82 3.14 
GNN 1.47 2.23 1.85 2.26 2.33 2.71 

 

• At each threshold level, lines from samples are labeled as congested or not.
• GNN outperforms both NN and CNN in terms of accuracy of its predictions 

at every level of loading threshold.
Comparison of percent errors at different loading threshold

• GNN has lower percent error compared to 
NN and CNN for each loading threshold.
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Results: ROPF Solving Time

• Total time to solve 2,000 ROPF testing samples at multiple loading threshold 
using predictions from different ML models.

• GNN consistently outperforms NN and CNN across all loading threshold.
• ROPF problem using predictions from GNN model has the fastest solving time.

Solving time for 2000 ROPF problems using GNN at different loading threshold
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Results: ROPF Solving Time for GNN

• Comparison of average measurement metrics of 2,000 ROPF testing samples 
at multiple loading thresholds using GNN model for branch classification.

Threshold Time 
(%) 

% of Samples 
Over Limit  

% of Lines 
Monitored 

Prediction 
Error (%) 

70% 89.72 0.2 27.27 1.47 
75% 86.77 0.2 23.66 2.23 
80% 84.59 0.25 20.55 1.85 
85% 83.90 0.4 17.67 2.26 
90% 82.99 9.65 15.17 2.33 
95% 81.56 41.35 11.99 2.71 

 • The 95% threshold has the highest reduction in computing time, but over 
40% of the samples did not meet the line limit constraints.

• At 85% threshold, only 0.4% of the samples violate the line limit 
constraints with a 16% reduction computing time.
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Summary

• Compared to NN and CNN, GNN is the best ML model for classifying 
branches that will likely be overloaded or congested.

• Choosing the right loading threshold for branch classification is important.
• At 85% loading threshold, 16% reduction in computing time.
• Once trained (offline), the ROPF model will perform faster compared to full 

OPF model.

Publication:
• Thuan Pham and Xingpeng Li, “Reduced Optimal Power Flow Using Graph Neural Network”, 54th North

American Power Symposium, Salt Lake City, UT, USA, Oct. 2022.
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Chapter 3
N-1 Optimal Power Flow using 
Augmented Hierarchical Graph Neural 
Network    
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N-1 Optimal Power Flow (N-1 OPF)

• Modern power system must react quickly to contingency events: 
transmission outage, generator outage, transformer outage.

• Loss of one element (N-1) can significantly change operational 
condition of the system.

• Per NERC' guidelines, the power system must continue to operate 
in the normal state following the loss of one element (N-1).

• N-1 OPF evaluates system vulnerabilities by studying the 
outcomes of a single possible transmission outage events.
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N-1 Optimal Power Flow (N-1 OPF)
• N-1 OPF performs contingency analysis by 

removing one element and assess its impact on 
violation of generation or transmission 
constraints.

• The goal is to minimize total generation cost 
while observing N-1 constraints.

• Operator must quickly scan through thousands of 
contingencies while avoiding islanding from the 
network.

• Develop new strategies to solve N-1 OPF faster



Optimal Power Flow

• Objective Function:
𝑚𝑚𝑚𝑚𝑚𝑚 �

𝑔𝑔∈𝐺𝐺

𝑐𝑐𝑔𝑔𝑃𝑃𝑔𝑔

• Constraints:
∑𝑃𝑃𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟 = 0.05 × ∑𝑑𝑑𝑛𝑛 , 𝑔𝑔 ∈ 𝐺𝐺 Reserve

0 ≤ 𝑃𝑃𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟 ,  𝑔𝑔 ∈ 𝐺𝐺 Reserve

𝑃𝑃𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑃𝑃𝑔𝑔 ≤ 𝑃𝑃𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟 ,  𝑔𝑔 ∈ 𝐺𝐺 Generation Constraints

𝑃𝑃𝑘𝑘 = 𝜃𝜃𝑓𝑓(𝑘𝑘) − 𝜃𝜃𝑡𝑡(𝑘𝑘) /𝑥𝑥𝑘𝑘 , 𝑘𝑘 ∈ 𝐾𝐾 Line Flow Equation

−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘 ≤ 𝑃𝑃𝑘𝑘 ≤ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘 , 𝑘𝑘 ∈ 𝐾𝐾 Line Limit Constraints

∑𝑔𝑔∈𝐺𝐺(𝑛𝑛)𝑃𝑃𝑔𝑔 + ∑𝑘𝑘∈𝐾𝐾(𝑛𝑛−)𝑃𝑃𝑘𝑘 − ∑𝑘𝑘∈𝐾𝐾(𝑛𝑛+)𝑃𝑃𝑘𝑘 = 𝑑𝑑𝑛𝑛 , 𝑛𝑛 ∈ 𝑁𝑁 Nodal Balance Equation

24

G is a set of generators
K is a set of lines
N is a set of buses



N-1 Optimal Power Flow
For N-1 cases, additional equations below:
• N-1 Constraints:
𝑃𝑃𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑃𝑃𝑐𝑐𝑐𝑐 ≤ 𝑃𝑃𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 ,  𝑔𝑔 ∈ 𝐺𝐺, 𝑐𝑐 ∈ 𝐶𝐶 Generation Constraints

−𝑃𝑃𝑔𝑔
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟≤ 𝑃𝑃𝑐𝑐𝑐𝑐 − 𝑃𝑃𝑔𝑔 ≤ 𝑃𝑃𝑔𝑔

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 𝑔𝑔 ∈ 𝐺𝐺, 𝑐𝑐 ∈ 𝐶𝐶 Ramping Rate

𝑃𝑃𝑐𝑐𝑐𝑐 = 𝜃𝜃𝑓𝑓(𝑐𝑐𝑐𝑐) − 𝜃𝜃𝑡𝑡(𝑐𝑐𝑐𝑐) /𝑥𝑥𝑘𝑘 × 𝑁𝑁𝑁𝑐𝑐𝑐𝑐 , 𝑘𝑘 ∈ 𝐾𝐾, 𝑐𝑐 ∈ 𝐶𝐶 Line Flow Equation

−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘 ≤ 𝑃𝑃𝑐𝑐𝑐𝑐 ≤ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘 , 𝑘𝑘 ∈ 𝐾𝐾, 𝑐𝑐 ∈ 𝐶𝐶 Line Limit Constraints
∑𝑔𝑔∈𝐺𝐺(𝑛𝑛)𝑃𝑃𝑐𝑐𝑐𝑐 + ∑𝑘𝑘∈𝐾𝐾(𝑛𝑛−)𝑃𝑃𝑐𝑐𝑐𝑐 − ∑𝑘𝑘∈𝐾𝐾(𝑛𝑛+)𝑃𝑃𝑐𝑐𝑐𝑐 = 𝑑𝑑𝑛𝑛 , 𝑛𝑛 ∈ 𝑁𝑁, 𝑐𝑐 ∈ 𝐶𝐶 Nodal Balance Equation

• Simplify Constraints:
−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑟𝑟 ≤ 𝑃𝑃𝑐𝑐 ≤ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑟𝑟 , 𝑟𝑟 ∈ 𝑅𝑅 Subset of Line Limit Constraints 

−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟 ≤ 𝑃𝑃𝑐𝑐𝑟𝑟 ≤ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟 , 𝑟𝑟 ∈ 𝑅𝑅, 𝑐𝑐 ∈ 𝐶𝐶 Subset of Line Limit Constraints

25

G is a set of generators
K is a set of lines
N is a set of buses
C is a set of contingencies

R is a set of heavily loaded or congested lines.
R is a subset of K that includes all lines.
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Literature Review

• Reduced Optimal Power Flow Using Graph Neural Network [1].
 demonstrate that GNN can be used to calculate OPF.

• Unsupervised Optimal Power Flow Using Graph Neural Networks [2].
 solutions of OPF contain violation constraints.

• Application of particle swarm optimization for power system operation 
considering N-1 contingency criteria [3].
 did not consider computing time as one of its evaluation metrics. 

References:
1. T. Pham and X. Li, "Reduced Optimal Power Flow Using Graph Neural Network," in 2022 North American Power Symposium (NAPS), Salt Lake City, 2022.
2. D. Owerko, F. Gama and A. Ribeiro, "Unsupervised Optimal Power Flow Using Graph Neural Networks," arXiv, 2022.
3. S. Thongkeaw, N. Rugthaicharoencheep and S. Auchariyamet, "Application of particle swarm optimization for power system operation considering N-1 contingency criteria," in 47th

International Universities Power Engineering Conference (UPEC), Uxbridge, 2012.
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Proposed Method for N-1 ROPF
OFFLINE – Training Mode

• Motivation:
 Reduce computing time of N-1 OPF.

• Propose approach:
 Using GNN to identify congested lines for the base 

cases and contingency cases.
 Use data from the validation data set to identify 

notable congest lines.
 Remove uncongested lines from the N-1 OPF
 Challenges: 

– Feasible solution
– Accuracy of prediction in relation to line 

constraint violation and total cost

BC-GNN: Base case-GNN
CC-GNN: Contingency-GNN
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Five Proposed Models for Identification of Congested Lines
• Notable Congested Lines [NCL]: only use the notable congested lines 

identified offline [(C)].
• Graph Neural Network [GNN]: uses predictions from base case and N-1 

cases, but without BC-GNN predictions as additional features for CC-
GNN [(A) and (B].

• Augmented Graph Neural Network [AGNN]: uses predictions from base 
case and N-1 cases [(A) and (B)], but without BC-GNN predictions as 
additional features for CC-GNN, along with notable congested lines 
[(C)].

• Hierarchical Graph Neural Network [HGNN]: uses predictions from 
base case and N-1 cases only, and with BC-GNN predictions as 
additional features for CC-GNN [(A) and (B)].

• Augmented Hierarchical Graph Neural Network [AHGNN] – the 
proposed method: uses predictions from base case and N-1 cases, and 
with BC-GNN predictions as additional features for CC-GNN, along with 
notable congested lines [(A), (B), (C)].

ONLINE – Prediction Mode

BC-GNN: Base case-GNN
CC-GNN: Contingency-GNN
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Results: Total Cost
• Majority of all models have a slight increase/decrease in the 

total cost of the objective function.
• Mean for all total costs are within a margin error of ± less 

than 1%

Model NCL GNN AGNN HGNN AHGNN

Mean 100.062 99.594 100.056 99.594 100.061

Median 100.043 99.551 100.046 99.551 100.043

Max 100.193 100.105 100.202 100.077 100.193

Min 100.002 99.365 99.919 99.365 100.002

Std. 0.052 0.135 0.06 0.135 0.051

Statistical data for objective total cost for the five proposed models

NCL: Notable Congested Lines 
GNN: Graph Neural Network 
AGNN: Augmented Graph Neural Network
HGNN: Hierarchical Graph Neural Network 
AHGNN: Augmented Hierarchical Graph Neural Network
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Results: Line Rating Violations
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e  NCL GNN AGNN HGNN AHGNN 
0 0 0 0 0 1000 
1 0 0 0 0 0 
2 0 0 0 0 0 
3 0 0 0 0 0 
4 16 0 28 1 0 
5 138 0 359 19 0 
6 269 0 326 239 0 
7 254 3 92 304 0 
8 81 23 195 391 0 
9 124 525 0 42 0 

10 84 314 0 4 0 
11 29 122 0 0 0 
12 5 10 0 0 0 
13 0 2 0 0 0 
14 0 1 0 0 0 

Total 1000 1000 1000 1000 1000 
 

• Only solutions from AHGNN model have zero line rating violations for all samples
Line rating violations for the five proposed models per 1000 samples.

Comparison of the number of line rating violations for the five proposed models. 

NCL: Notable Congested Lines 
GNN: Graph Neural Network 
AGNN: Augmented Graph Neural Network
HGNN: Hierarchical Graph Neural Network 
AHGNN: Augmented Hierarchical Graph Neural Network



31

Results: Solving time for AHGNN

• Objective total cost for the proposed AHGNN increase by negligible 0.06% with 
nearly 500 samples within 0.04%.

• Using AHGNN, solving time for 1000 samples with N-1 ROPF decrease by 19% 
compared to the Full N-1 OPF.

Histogram of the total objective cost for AHGNN model

Comparison of solving time between full N-1 OPF and N-1 ROPF using AHGNN

NCL: Notable Congested Lines 
GNN: Graph Neural Network 
AGNN: Augmented Graph Neural Network
HGNN: Hierarchical Graph Neural Network 
AHGNN: Augmented Hierarchical Graph Neural Network
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Summary

• AHGNN method provides the fastest solving time for optimal solution.
• Proposed AHGNN method is very effective and accurate:

• The predictions lead to N-1 ROPF solutions with zero line rating violations.
• Total cost of objective function increases by less than 0.04% for N-1 ROPF.

• Proposed AHGNN method leads to enhanced computing efficiency: 
• Solving time decreases by 19% for a small-scale power system. 
• Expect a larger reduction in solving time for a larger system.

Publication:
• Thuan Pham and Xingpeng Li, “N-1 Reduced Optimal Power Flow Using Augmented Hierarchical Graph

Neural Network”, IEEE Transactions on Neural Networks and Learning Systems, (In Review).

NCL: Notable Congested Lines 
GNN: Graph Neural Network 
AGNN: Augmented Graph Neural Network
HGNN: Hierarchical Graph Neural Network 
AHGNN: Augmented Hierarchical Graph Neural Network
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Chapter 4
Network Reconfigured Optimal Power Flow
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Network Reconfigured Optimal Power Flow (NR-OPF)

• Network reconfiguration strategically changes the network layout by flexibly 
switching transmission lines on or off.

• Allow grid operators to reduce network congestion by switching off 
congested lines, lead to improvement in economic efficiency and reliability.

• NR-OPF problem is solved using Mixed-Integer Linear Programming (MILP).
• Each transmission line represents a binary 

variable corresponding to the on/off status. 
• MILP is computationally challenging problem, 

especially for larger system, due to the number 
of transmission lines.
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GNN-Accelerated Network Reconfigured Optimal 
Power Flow (GaNR-OPF)
• For certain load profile, there is no solution using OPF, but utilizing 

network reconfiguration, a feasible solution can be found. 
• Operators need to quickly scan all possible network reconfiguration 

options to find an optimal or feasible solution. Ex: 2N where N is the 
number of reconfigured lines.

• Using GaNR-OPF to reduce the MILP problem into LP problem OR to 
reduce the number of network reconfiguration options to speed up 
computing time.



Optimal Power Flow

• Objective Function:
𝑚𝑚𝑚𝑚𝑚𝑚 �

𝑔𝑔∈𝐺𝐺

𝑐𝑐𝑔𝑔𝑃𝑃𝑔𝑔

• Constraints:
∑𝑃𝑃𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟 = 0.05 × ∑𝑑𝑑𝑛𝑛 , 𝑔𝑔 ∈ 𝐺𝐺 Reserve

𝑃𝑃𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑃𝑃𝑔𝑔 ≤ 𝑃𝑃𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟 ,  𝑔𝑔 ∈ 𝐺𝐺 Generation Constraints

0 ≤ 𝑃𝑃𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟 ,  𝑔𝑔 ∈ 𝐺𝐺 Reserve

𝑃𝑃𝑘𝑘 = 𝜃𝜃𝑓𝑓(𝑘𝑘) − 𝜃𝜃𝑡𝑡(𝑘𝑘) /𝑥𝑥𝑘𝑘 , 𝑘𝑘 ∈ 𝐾𝐾 Line Flow Equation

−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘 ≤ 𝑃𝑃𝑘𝑘 ≤ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘 , 𝑘𝑘 ∈ 𝐾𝐾 Line Limit Constraints

∑𝑔𝑔∈𝐺𝐺(𝑛𝑛)𝑃𝑃𝑔𝑔 + ∑𝑘𝑘∈𝐾𝐾(𝑛𝑛−)𝑃𝑃𝑘𝑘 − ∑𝑘𝑘∈𝐾𝐾(𝑛𝑛+)𝑃𝑃𝑘𝑘 = 𝑑𝑑𝑛𝑛 , 𝑛𝑛 ∈ 𝑁𝑁 Nodal Balance Equation
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G is a set of generators
K is a set of lines
N is a set of buses



Network Reconfigured Optimal Power Flow

• Objective Function:
𝑚𝑚𝑚𝑚𝑚𝑚 �

𝑔𝑔∈𝐺𝐺

𝑐𝑐𝑔𝑔𝑃𝑃𝑔𝑔

• Constraints:
∑𝑃𝑃𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟 = 0.05 × ∑𝑑𝑑𝑛𝑛 , 𝑔𝑔 ∈ 𝐺𝐺 Reserve

𝑃𝑃𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑃𝑃𝑔𝑔 ≤ 𝑃𝑃𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟 ,  𝑔𝑔 ∈ 𝐺𝐺 Generation Constraints

0 ≤ 𝑃𝑃𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟 ,  𝑔𝑔 ∈ 𝐺𝐺 Reserve

−𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(1 − 𝑁𝑁𝑁𝑁𝑘𝑘) ≤ 𝑃𝑃𝑘𝑘 − 𝜃𝜃𝑓𝑓(𝑘𝑘) − 𝜃𝜃𝑡𝑡(𝑘𝑘) /𝑥𝑥𝑘𝑘 ≤ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(1 − 𝑁𝑁𝑁𝑁𝑘𝑘) , 𝑘𝑘 ∈ 𝐾𝐾 Line Flow Equation

−𝑁𝑁𝑁𝑁𝑘𝑘 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘 ≤ 𝑃𝑃𝑘𝑘 ≤ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘 ∗ 𝑁𝑁𝑁𝑁𝑘𝑘 , 𝑘𝑘 ∈ 𝐾𝐾 Line Limit Constraints

∑𝑔𝑔∈𝐺𝐺(𝑛𝑛)𝑃𝑃𝑔𝑔 + ∑𝑘𝑘∈𝐾𝐾(𝑛𝑛−)𝑃𝑃𝑘𝑘 − ∑𝑘𝑘∈𝐾𝐾(𝑛𝑛+)𝑃𝑃𝑘𝑘 = 𝑑𝑑𝑛𝑛 , 𝑛𝑛 ∈ 𝑁𝑁 Nodal Balance Equation

𝑁𝑁𝑁𝑁𝑘𝑘 is a binary variable that determines the line status ON/OFF associated with network reconfiguration
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G is a set of generators
K is a set of lines
N is a set of buses
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Literature Review

• Network reconfiguration has been explored as an option to 
reduce operational cost and increase grid flexibility [1].

• Reinforcement learning and GNN has been used to speed up NR-
OPF [2]
 still utilize on heuristic approach to develop a ML model

• Develop a heuristics algorithm to solve NR-OPF [3]
 proposed model did not produce precise prediction based on 

different topologies under given load profiles.

References:
1. M. Numan, M. F. Abbas, M. Yousif, S. S. M. Ghoneim, A. Mohammad and A. Noorwali, "The Role of Optimal Transmission Switching in Enhancing Grid Flexibility: A Review," in IEEE Access, vol. 11.
2. Crozier, C., Baker, K., & Toomey, B. (2022). Feasible region-based heuristics for optimal transmission switching. Sustainable Energy, Grids and Networks, 30, 100628.
3. T. Han and D. J. Hill, "Learning-Based Topology Optimization of Power Networks," in IEEE Transactions on Power Systems, vol. 38, no. 2, pp. 1366-1378, March 2023.
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Proposed Method for GaNR-OPF OFFLINE – Training Mode

• Motivation:
• Reduce computing time of NROPF

• Propose approach:
• Using ML, especially GNN, to identify all line 

statuses 
• Turn a MILP problem into an LP problem
• Much faster to solve, save more time
• Challenges: 

– Feasible solution
– Accuracy of prediction in relation to total 

cost
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Pre-ML Filtering Step

• Colormesh figure displays lines statuses for 
NROPF solutions.

• Yellow = ON Purple = OFF
• Quickly identify lines that is ALWAYS ON or 

ALWAYS OFF from the training samples.
• Exclude these always ON/OFF lines from 

predictions using GNN model.
• Focus GNN model on training “critical” lines.

Line statuses (ON/OFF) of each sample
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Post-ML Selection Step

• ML prediction is a probability between 0 and 1.
• Normally, prediction with higher probability is chosen for likelihood of being corrected.
• An Upper Limit/Lower Limit of is chosen as a threshold.
• Only predictions below 95% or above 5% (highlight in gray shading) will be excluded.
• Reduce the possible number of network reconfiguration.
• Speed up time to find feasible solution.

Line 1 2 3 4 5 6 
OFF 6.11% 0.04% 7.53% 81.54% 23.03% 0.15% 

ON 93.89% 99.96% 92.47% 18.46% 76.97% 99.85% 
Post-ML 
Selection Exclude Select Exclude Exclude Exclude Select 
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GaNR-ROPF Methods
ONLINE – Prediction Mode

• Full GNN-Linear Problem (FGNN-LP): uses only GNN
model for prediction of line switching status.

• Full GNN-Mixed-Integer Linear Problem (FGNN-MILP):
uses the post-ML selection step after using GNN model
for prediction of line switching status.

• Reduced GNN-Linear Problem (RGNN-LP): uses the pre-
ML filtering step before using GNN model for prediction
of line switching status.

• Proposed Reduced GNN-Mixed-Integer Linear Problem
(RGNN-MILP): uses both pre-ML filtering step and post-
ML selection step along with GNN model for prediction
of line switching status.
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Results: Total Cost

*Note: The FGNN-MILP model has 122 samples with “Infeasible” solutions out of 1,000 samples.

FGNN-LP = No Extra Step
FGNN-MILP = Post-ML Selection
RGNN-LP = Pre-ML Filtering
RGNN-MILP= Pre-ML Filtering/Post-ML Selection 

• MILP-based methods (FGNN-MILP, RGNN-
MILP): Highly accurate, with results close to 
the optimal solution.

• LP-based methods (FGNN-LP, RGNN-LP): More 
variable, with deviations up to 11% from the 
optimal solution.

• RGNN-MILP: Stands out as the most reliable 
method, with over 80% of solutions perfectly 
matching the optimal cost.

• Overall: MILP methods are superior in 
producing accurate and stable cost-optimized 
results.
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Results: Solving Time
• FGNN-LP and RGNN-LP: Achieve remarkable 

solving time reductions, with improvements of 
up to 99%.

• FGNN-MILP: Yields average solving time 
reductions of 40%, but some samples can take 
up to 10 times longer than the original problem.

• RGNN-MILP: Reduces solving time by 94%, with 
a median time of 3.5%, offering consistent 
efficiency.

• Overall: LP-based methods are the fastest, 
while RGNN-MILP offers strong efficiency and 
consistent performance.

FGNN-LP = No Extra Step
FGNN-MILP = Post-ML Selection
RGNN-LP = Pre-ML Filtering
RGNN-MILP= Pre-ML Filtering/Post-ML Selection 

*Note: The FGNN-MILP model has 122 samples with “Infeasible” solutions out of 1,000 samples.
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Results: RGNN-MILP Method
• All four methods experience significant decrease in computing time for solution, averaging 

from 40% to as much as 99%.
• Based on the result, RGNN-MILP method is the ideal candidate for GaNR-OPF:
 Total Cost: mean difference is 0.05% and median difference is 0.02% from the full NR-OPF.
 Solving Time: mean time is 6% and median time 3.5% of the full NR-OPF.
 RGNN-MILP is the top performer in terms of speed and consistency among the 

benchmark methods.

Statistical data for objective total cost for the four proposed methods Statistical data for solving time for the four proposed methods

  Total Cost in Percent (%) 
Mean Max Min Median Std. Dev. 

FGNN-LP 102.17% 103.72% 100.29% 102.23% 0.80% 

FGNN-MILP 100.02% 100.98% 99.51% 100.00% 0.11% 

RGNN-LP 102.25% 111.22% 100.00% 101.83% 1.75% 

RGNN-MILP 100.05% 100.56% 99.92% 100.02% 0.09% 

 

  Solving Time in Percent (%) 
Mean Max Min Median Std. Dev. 

FGNN-LP 0.81% 3.38% 0.08% 0.72 0.49 

FGNN-MILP 60.23% 1085.76% 2.72% 30.09 92.89 

RGNN-LP 0.83% 4.01% 0.08% 0.73 0.51 

RGNN-MILP 6.34% 83.77% 0.41% 3.47 8.24 

 

FGNN-LP = No Extra Step
FGNN-MILP = Post-ML Selection
RGNN-LP = Pre-ML Filtering
RGNN-MILP= Pre-ML Filtering/Post-ML Selection 
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Summary

• GaNR-OPF provides almost identical total cost to the full NR-OPF with much faster 
solving time.

• Saving of 94% in solving time with all optimal solutions using predictions from RGNN-
MILP method.

• Combination of both processing steps pre and post ML result in dramatic reduction 
in solving time while still retaining quality of solutions.

• GaNR-OPF using the proposed RGNN-MILP method is an effective tool to address a 
large number of network reconfiguration problems quickly.

Publication:
• Thuan Pham and Xingpeng Li, “Graph Neural Network-Accelerated Network-Reconfigured Optimal Power

Flow”, IEEE Transactions on Industrial Informatics, (In Review).

FGNN-LP = No Extra Step
FGNN-MILP = Post-ML Selection
RGNN-LP = Pre-ML Filtering
RGNN-MILP= Pre-ML Filtering/Post-ML Selection 
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Chapter 5
Virtual Node-Splitting in Hierarchical 
Graph Neural Network for Optimal 
Power Flow
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Optimal Power Flow

• Objective Function:

• Constraints:

𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑔𝑔∈𝐺𝐺

𝑐𝑐𝑔𝑔𝑃𝑃𝑔𝑔

𝑃𝑃𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑃𝑃𝑔𝑔 ≤ 𝑃𝑃𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 ,  𝑔𝑔 ∈ 𝐺𝐺 Generation Constraints

𝑃𝑃𝑘𝑘 = 𝜃𝜃𝑓𝑓(𝑘𝑘) − 𝜃𝜃𝑡𝑡(𝑘𝑘) /𝑥𝑥𝑘𝑘 , 𝑘𝑘 ∈ 𝐾𝐾 Line Flow Equation

−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘 ≤ 𝑃𝑃𝑘𝑘 ≤ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘 , 𝑘𝑘 ∈ 𝐾𝐾 Line Limit Constraints
∑𝑔𝑔∈𝐺𝐺(𝑛𝑛)𝑃𝑃𝑔𝑔 + ∑𝑘𝑘∈𝐾𝐾(𝑛𝑛−)𝑃𝑃𝑘𝑘 − ∑𝑘𝑘∈𝐾𝐾(𝑛𝑛+)𝑃𝑃𝑘𝑘 = 𝑑𝑑𝑛𝑛 , 𝑛𝑛 ∈ 𝑁𝑁 Nodal Balance Equation

G is a set of generators
K is a set of lines
N is a set of buses
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• For GNN, network topologies of power systems are commonly represented as 
homogeneous graphs.

• When multiple generators are associated with a single node, homogeneous graph 
restricts the GNN model from capturing distinct node features.

Virtual Node-Splitting

A 3-bus system (Network A) vs. the expanded 3-bus 
system using virtual node-splitting (Network B).

• Subdividing  virtual nodes from existing physical nodes:
• Generators is connected to the virtual node.
• Load is linked with the real node.

• Retain specific features at the node-level for 
generators such as:
• Ramping rate
• Generation cost

• Larger topology -> increase training time -> better 
predictions
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Literature Review

• Modifying the topology of a transmission network, such as line 
switching and bus-splitting, has been used as a corrective 
mechanism to mitigate congestion issues [1].

• For transmission expansion planning, bus-splitting has 
demonstrated its efficacy in enhancing optimal dispatch 
solutions [2]

• Bus-splitting in substation has been utilized for system 
protection[3]

• Topology modification has been well studied for power system.
References:
1. A. Hinneck, B. Morsy, D. Pozo and J. Bialek, "Optimal Power Flow with Substation Reconfiguration," in 2021 IEEE Madrid PowerTech, Madrid, 2021.
2. M. Heidarifar, M. Doostizadeh and H. Ghasemi, "Optimal transmission reconfiguration through line switching and bus splitting," in 2014 IEEE PES General Meeting, National Harbor, 2014.
3. P. J. N. Gealone and A. E. D. Tio, "Optimized Transmission Expansion Planning with Bus-Splitting in Grids with High VRE Penetration," in SIEDS, Charlottesville, 2024.
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Proposed Method for ROPFLG OFFLINE – Training Mode

• Motivation:
• Reduce computing time of OPF.

• Propose approach:
• Using virtual node-splitting to increase the 

number of node features for training GNN model.
• Hierarchical GNN model:

• 1st model predicts congested lines.
• 2nd model predicts maximum-capacity 

generators using predictions of 1st model.
• Challenges: 

– Longer training time.
– Feasible solution with accurate prediction in 

relation to objective total cost.
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Four Proposed Methods
ONLINE – Prediction Mode

• Full OPF (FOPF): solves the OPF problem without
reducing the number of constraints.

• Reduced OPF Lines (ROPFL): the GNN model
predicts congested lines. Lines limit constraints
for non-congested lines are removed.

• Reduced OPF Generators (ROPFG): the GNN
model predicts maximum-capacity generators.
Parameters for maximum-capacity generators
are set.

• Reduced OPF Lines and Generators (ROPFLG) (the proposed method): uses the first GNN
model to first predict congested line to use as input features for the second GNN model, which
predicts maximum- capacity generators. Line limit constraints for non-congested lines are
removed, and variables for predicted maximum-capacity generators are switched to known
parameters that would reduce both variables and constraints.
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Results: Solving Time and Total Cost
FOPF = No Extra Step
ROPFL = Reduce lines constraints
ROPFG = Reduce generator constraints 
ROPFLG = Reduce both types of constraints

• Mean total cost are almost identical for 
all methods.

• ROPFL and ROPFG have similar time 
saving around 22%

• ROPFLG delivers the most significant 
time savings, at almost 32% or 40 
seconds faster, while maintaining optimal 
solutions comparable to the baseline 
FOPF.

  Mean Total Cost (%) Time Saving (%) 
FOPF 100% 0 
ROPFL 100.061% 21.67% 
ROPFG 100.064% 22.16% 
ROPFLG 100% 31.92% 

 

The proposed ROPFLG method achieves significant reductions in computation 
time while preserving solution quality.

Solving time for 1000 test samples using the four proposed methods.

Mean total cost and time save in (%) for solving 1000 test samples.
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Summary

• ROPFLG offers the highest computation time savings while preserving the optimal 
solution quality of FOPF.

• All ROPF methods have nearly identical average total costs compared to FOPF, with 
differences below 0.1% (negligible).

• Larger systems with multiple congested lines and high generator loads would show 
more pronounced savings.

• The hierarchical GNN model's savings are less impactful for systems with few 
removable constraints.

Publication:
• Thuan Pham and Xingpeng Li, “Constraints and Variables Reduction for Optimal Power Flow Using

Hierarchical Graph Neural Networks with Virtual Node-Splitting”, IEEE PES General Meeting, (In Review).

FOPF = No Extra Step
ROPFL = Reduce lines constraints
ROPFG = Reduce generator constraints 
ROPFLG = Reduce both types of constraints
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Chapter 6
Conclusions
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Conclusions

• Machine learning, especially GNN model, enhances prediction accuracy and 
computational efficiency. 

• GNN is the best model for classifying branches that will likely be overloaded or 
congested. Thus, reducing computing time for Reduced Optimal Power Flow.

• Proposed Augmented Hierarchical Graph Neural Network model’s predictions lead to 
solutions with zero line rating violations and faster computing time.

• GNN-Accelerated Network Reconfigured Optimal Power Flow using pre-ML filtering and 
post-ML selection mechanisms is an effective tool to address a large number of 
network reconfiguration problems quickly.

• Virtual node-splitting enhances predictive capability of GNN model. Reduced Optimal 
Power Flow with Lines and Generators method achieves the highest computational 
time savings among methods while maintaining optimal solutions.
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Future Work

• GNN models show potential for greater computational time savings and 
improved results when applied to larger, more complex systems.

• Alternative ML architectures for GNN:
• Transfer Learning in GNNs: leverages pre-trained models for new tasks 

without retraining. Enhances deployment speed and reduces 
computational costs.

• Dual Prediction GNNs: Predicts multiple outputs (e.g., congested lines 
and maximum-capacity generators) simultaneously. Optimizes 
resource use, improves accuracy, and reduces training time.

• Apply GNN model for AC OPF problem.
• Use line shift-factor in formulation of OPF problem.
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