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3-D Trend of Power System

Figure. Traditional Power Generation Figure. Microgrid Power Generation 
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[https://www.eia.gov/energyexplained/electricity/delivery-to-consumers.php]
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The Elements of Microgrid
Microgrid are considered to be locally confined and independently
controlled electric power grids in which a distribution architecture 
integrates loads and distributed energy resources.

• Generation
• Diesel Generators
• Microturbine
• Renewable Energy Resources

• Energy Storage
• Battery
• Super capacitors
• Flywheels

• Load
• Community Loads
• Main Grid

• Power Electronics
• Converters
• Inverters
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Microgrid Energy Management

Microgrid management problems can be divided into a few groups based on 
time-scale:
• 5-25 years: microgrid design and optimal sizing
• 1-3 years: microgrid expansion planning
• 1 day to 1 week/month: maintenance scheduling
• 1 day: day-ahead scheduling (energy management)
• 5-30 minutes: economic dispatch (energy management)
• < 1 minute: for isolated microgrid , frequency regulation, stability
• < 1 minute: for networked microgrid , netload fluctuation control
• < 1 second: control of each microgrid asset (e.g., single PV/ESS)

[Li, Xingpeng (2022): ECE6327_SmartGrid. figshare. Online resource. https://doi.org/10.6084/m9.figshare.19761268.v1] c
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Challenge with Increasing Renewable Energy Sources 

Figure. Generating Capacity Additions

• Increasing renewable generations may 
significantly weaken the system’s reliability 
and resilience due to the stochastic and 
intermittent generation. 

[https://www.eia.gov/todayinenergy/detail.php?id=55719]



7

Motivation for BESS
To reach 100% clean electricity goal by 2035: 
• Generation capacity grows to roughly three times the 2020 level by 2035 
• Estimated 2 terawatts of wind and solar.

Figure. 100 MW Gambit Energy Storage Park in Angleton, Texas.

[https://www.nrel.gov/analysis/100-percent-clean-electricity-by-2035-study.html]

• Renewable energy sources like wind and solar are 
intermittent and weather-dependent.

• Increasing demand of energy and clean energy 
policy require the large amount of BESS installation. 

• Integration of BESS with these sources to provide 
reliable and continuous power supply, exploring 
advanced grid management strategies.

• Long-term performance and durability of BESS are 
limited by the impact of cycling, temperature 
variations, and other factors on their lifespan.
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Grid-Friendly Microgrid: Fixed Trade Power

Objective:
• To maintain tie-line (point of common coupling) power at a less fluctuation level by 

employing both DERs and BESS to mitigate the fluctuation of microgrid net-load.

Proposed Strategy:
• A two-phase real-time energy management strategy for networked microgrid is 

proposed to address microgrid internal fluctuation internally.
• Real-time Dispatch Phase: Solve a multi-interval microgrid economic 

dispatch problem.
• Real-Time control Phase: Fast-acting Batteries will address the net-

load fluctuation in real-time.
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Timeline Summary

𝑡𝑡 = 0 𝑡𝑡 = 24ℎ𝑟𝑟𝑡𝑡 = 10𝑝𝑝𝑝𝑝
At 𝑡𝑡 = 10𝑝𝑝𝑝𝑝 of D-1, run day-
ahead scheduling.

(D-1)

𝑡𝑡 = 10𝑎𝑎𝑝𝑝 𝑡𝑡 = 10:15𝑎𝑎𝑝𝑝𝑡𝑡 = 9: 55𝑎𝑎𝑝𝑝

Phase-1: At 𝑡𝑡 = 9: 55𝑎𝑎𝑝𝑝 of 
D, run economic dispatch 
using updated data and 
moving window method.

𝑡𝑡 = 10:10𝑎𝑎𝑝𝑝,
10𝑠𝑠𝑠𝑠𝑠𝑠

𝑡𝑡 = 10:10𝑎𝑎𝑝𝑝,
14𝑠𝑠𝑠𝑠𝑠𝑠

Phase-2: Real-Time Control 
Every 4 second

t at 10𝑎𝑎𝑝𝑝 𝑡𝑡𝑡𝑡 11𝑎𝑎𝑝𝑝

Operating Day (D)
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Results
• With the proposed two-phase energy management strategy, a microgrid can 

be considered as a grid-friendly microgrid from the perspective of a bulk grid 
operator. 

Figure. Tie-line exchange power at 5% prediction error Figure. BESS Output at 5% prediction error
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Grid Supporting Microgrid: Flexible Trade Power

Proposed Strategy:
• The proposed grid-supporting energy management (GSEM) strategy can not only 

properly manage DERs in a microgrid but also enable DERs to provide grid services, 
which enables a microgrid to be grid-supporting via flexible trading power.

Flexible trading power.
• Upper Bound: 𝑀𝑀𝑎𝑎𝑀𝑀 𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡

• Lower Bound: 𝑀𝑀𝑀𝑀𝑀𝑀 𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡

Adjustable Energy Sources:
• Diesel Generators 
• Wind Turbine
• Battery Energy Storage System
• Roof-top Solar Panel System

[Chatterjee, Debjyoti & Rather, Zakir. (2018). Modelling and Control of DFIG-based Variable Speed Wind Turbine.] 

Figure. Typical Wind Turbine
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Result Analysis
Scenario A: Selling Power
• The target tie-line trading power for 15:15-15:30 is 

selling electricity to grid at a rate of 242.33 kW. 
• BESS is on charging status with a power of 75 kW.

No. 𝛼𝛼𝐸𝐸 𝛼𝛼𝑠𝑠 𝛼𝛼𝑤𝑤 Power Range (kW)
0 0 0 0 -242.33
1 0.05 0.01 0.05 (-247.33, -193.33)
2 0.05 0.02 0.05 (-252.33, -193.33)
3 0.05 0.02 0.08 (-252.33, -169.33)
4 0.08 0.02 0.08 (-252.33, -163.93)
5 0.08 0.05 0.1 (-267.33, -147.93)
6 0.1 0.05 0.1 (-267.33, -144.33)
7 0.1 0.08 0.1 (-282.33, -144.33)
8 0.12 0.08 0.1 (-282.33, -140.73 )
9 0.15 0.08 0.1 (-282.33, -135.33)

10 0.15 0.1 0.1 (-292.33, -135.33)

No. 𝛼𝛼𝐸𝐸 𝛼𝛼𝑠𝑠 𝛼𝛼𝑤𝑤 Power Range (kW)

0 0 0 0 814.33
1 0.05 0.01 0.05 (809.33 , 863.33)
2 0.05 0.02 0.05 (804.33 , 863.33)
3 0.05 0.02 0.08 (804.33 , 887.33)
4 0.08 0.02 0.08 (804.33 , 892.73 )
5 0.08 0.05 0.1 (789.33 , 908.73)
6 0.1 0.05 0.1 (789.33 , 912.33)
7 0.1 0.08 0.1 (774.33 , 912.33)
8 0.12 0.08 0.1 (774.33 ,  915.93)
9 0.15 0.08 0.1 (774.33 , 921.33)

10 0.15 0.1 0.1 (764.33 , 921.33)

Table Results of Scenario A Table Results of Scenario B

Scenario B: Purchasing Power
The target tie-line trading power for 19:45-20:00 is 
purchasing electricity from grid at a rate of 814.33 kW. 
BESS is on discharging status with a power of 20 kW. 
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Summary

1. Cunzhi Zhao and Xingpeng Li, “A Novel Real-Time Energy Management Strategy for Grid-Friendly Microgrid:
Harnessing Internal Fluctuation Internally,” The 52nd North American Power Symposium (NAPS), Tempe, AZ, USA,
Apr, 2021.

2. Cunzhi Zhao and Xingpeng Li, “A Novel Real-Time Energy Management Strategy for Grid-Supporting Microgrid:
Enabling Flexible Trading Power,” IEEE PES General Meeting 2021, Washington, DC, USA, Jul. 2021.

BESS-Integrated Grid-connected Microgrid:
• Able to provide a fixed and flexible tie-line exchange power.
• Enhances system’s stability.
• Improves the quality performance of renewables.
• Reduces operational costs.
• Contributes to a cleaner and more reliable energy system.
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Offshore Rig Platforms Application

• Offshore loads: oil and natural gas rig platforms.
• ~5 - 100 MW.
• Most are powered by local diesel generators.
• Some are powered by local gas generators.
• Use 16 terawatt-hours (TWh) a year.
• Heavy CO2 emissions.

• In 2019, gas and oil made up 55% of the world’s 
CO2 emissions from fuel, and a significant 
proportion came from offshore O&G platforms.

https://www.greentechmedia.com/articles/read/oil-and-gas-companies-can-power-offshore-platforms-with-renewables
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A 100% renewable Offshore System
• Motivation:

• Reduce CO2 emission; net-zero future.
• Fast development of offshore wind power.

• Proposed Model:
• A 100% Renewable Energy System which can enable zero CO2 emission for 

offshore platforms.
• Offshore hybrid Renewable energy system (OHRES) main components:

• Battery energy storage system (BESS).
• Hydrogen energy storage system (HESS).
• Offshore wind power.
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A 100% renewable Offshore Model
Illustration of the proposed Offshore Hybrid Renewable Energy Model for powering 
offshore loads with clean renewable energy.

ElectrolyzerHydrogen
StorageFuel Cell

Offshore
Hybrid
Renewable 
Energy
System

HESS BESS

Wind Power & Rigs

[https://atb.nrel.gov/electricity/2022/utility-scale_battery_storage]
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Model of proposed Offshore System
• Three models:

• A. HESS Resilience Model.
• B. BESS Resilience Model.
• C. Joint Resilience Model.

• A basic model that represents the 
traditional offshore system is 
demonstrated as a benchmark.

• Resilience duration 𝑇𝑇𝑅𝑅 is defined as the 
time period that the system can survive 
without wind power.

105 105 105 105

121
129

137
145

120

140

160

179

117
125

132
140

0

20

40

60

80

100

120

140

160

180

200

6 12 18 24

Av
er

ag
e 

El
ec

tr
ic

ity
 P

ric
e 

$/
M

W
h

Resilience Duration T

Results under different Resilience duration hours

Basic A B C



21

Microgrid Resilience Operational Planning 
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Resilience Operational Planning (ROP) Algorithm 

Motivation:
• Increase the resilience of microgrid. 
• Prevent the system failure during extreme events.

Contribution:
• Resilience Index: Microgrid survivability rate (SR)

• Defined as the sum of the expected values of the successful 
scenarios where the power supplied by the microgrid never 
drops below a predefined percentage of critical load 
throughout the time period T.

• Proposed Resilient Operational Planning (ROP) 
Algorithm.

Start

End

Collect Inverter Failure Probabilities 

Resilience 
Enhancement Step

Scenario Generation Algorithm

SR ≥ Pre-set level ?

Yes

No

ROP Optimization 
Model

Figure. ROP algorithm flowchart.
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ROP Case Studies
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Figure. Plot of survivability rate.

𝛼𝛼 90% 95% 98% 100% 102% 105%

SR 100% 100% 99.5% 94.5% 94.2% 0%

Table Survivability Rate sensitivity test of 𝛼𝛼.

𝛼𝛼 is defined as the minimum acceptable percentage of 
critical load supplied under extreme events.

SR ROP Add 1 DG Add 2 DG

Non-emergency 
Event 96.2% / /

Moderate Event 36% 97% /

Extreme Event 22.3% 94% 99.9%

Table Evaluation of ROP under different events.
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Summary

1. Cunzhi Zhao and Xingpeng Li, “A 100% Renewable Energy System: Enabling Zero CO2 Emission Offshore
Platforms”, 54th North American Power Symposium, Salt Lake City, UT, USA, Oct. 2022.

2. Cunzhi Zhao, Jesus Silva-Rodriguez and Xingpeng Li, “Resilient Operational Planning for Microgrids Against
Extreme Events”, Hawaii International Conference on System Sciences, Maui, Hawaii, USA, Jan. 2023.

BESS-Integrated Isolated Microgrid:
• Enables a zero carbon emission system for Offshore Platforms.
• Enhances the resilience against the extreme weather.
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Introduction of Battery Degradation
Main Component of BESS: Lithium-ion Battery 

• Loss of Li-ions
• Loss of Electrolyte
• Internal Resistance

Main Reason of Degradation:

[https://www.levyelectric.com/post/the-newest-battery-technologies-we-re-excited-about-for-electric-scooters]
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Real Battery Data
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C rate: charging/discharge rate
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Battery capacity curve

[https://www.batteryarchive.org/]
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Motivations
Heuristic Battery Degradation Models
• Linear Degradation Model (1)

𝑓𝑓 𝐵𝐵𝐵𝐵𝐵𝐵 = �
𝑡𝑡
𝑠𝑠𝐵𝐵𝐵𝐵 ∗ (𝑃𝑃𝐵𝐵𝐸𝐸𝐵𝐵𝐵𝐵

𝐶𝐶𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸,𝑡𝑡 + 𝑃𝑃𝐵𝐵𝐸𝐸𝐵𝐵𝐵𝐵
𝐵𝐵𝐷𝐷𝑠𝑠𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸,𝑡𝑡)

• DOD based Degradation Model (2)

𝑓𝑓 𝐵𝐵𝐵𝐵𝐵𝐵 = �
𝑡𝑡
𝑠𝑠𝐵𝐵𝐵𝐵
𝐵𝐵𝐷𝐷𝐵𝐵,𝑡𝑡

𝐵𝐵𝐵𝐵𝐵𝐵 represents Battery Degradation Cost
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Figure. Degradation comparison under different discharge rates

Research Gap: Heuristic Battery Degradation Models cannot accurately predict the
degradation values caused by different operating conditions, and the degradation prediction
error is high for both models.
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Neural Network based Battery Degradation (NNBD)
Battery Variables: 
• Charge/Discharge Rate
• Initial State of Charge (SOC)
• Depth of Discharge (DOD)
• Ambient Temperature (T)
• Capacity (SOH)

Input Hidden 1 Hidden 2 Output

Structure of the NN model
• Input Layer :5
• Hidden Layer 1: 20
• Hidden Layer 2: 10
• Output Layer:1 Fig. Structure of NNBD Model
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Training Dataset
MATLAB Simulink

Fig. Simulink file for data collection Fig. State of Health versus Cycle Number

The training dataset includes 945 different battery aging tests with different values of degradation factors. 
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BESS Integrated Microgrid Day-ahead Scheduling (MDS)
Objective:
𝑓𝑓𝑀𝑀𝑀𝑀 = ∑∑(𝑃𝑃𝑀𝑀𝐷𝐷𝑡𝑡 𝑠𝑠𝑀𝑀𝐷𝐷 + 𝑈𝑈𝑀𝑀𝐷𝐷𝑠𝑠𝑀𝑀𝐷𝐷𝑁𝑁𝑁𝑁 + 𝑉𝑉𝑀𝑀𝐷𝐷𝑠𝑠𝑀𝑀𝐷𝐷𝐵𝐵𝑆𝑆) + 𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡 𝑠𝑠𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡 − 𝑃𝑃𝐵𝐵𝐸𝐸𝑆𝑆𝑆𝑆𝑡𝑡 𝑠𝑠𝐵𝐵𝐸𝐸𝑆𝑆𝑆𝑆𝑡𝑡 (𝑀𝑀 ∈ 𝑆𝑆𝑀𝑀 , 𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) (1)

Constraints are as follows:
𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡 + ∑𝐷𝐷∈𝐵𝐵𝐺𝐺 𝑃𝑃𝑀𝑀𝐷𝐷

𝑡𝑡 + ∑𝐷𝐷∈𝐵𝐵𝑊𝑊𝑊𝑊 𝑃𝑃𝑊𝑊𝑇𝑇𝐷𝐷
𝑡𝑡 + ∑𝐷𝐷∈𝐵𝐵𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝐷𝐷

𝑡𝑡 + ∑𝐷𝐷∈𝐵𝐵𝑆𝑆 𝑃𝑃𝐵𝐵𝐷𝐷𝑠𝑠𝐸𝐸
𝑡𝑡,𝐷𝐷 = 𝑃𝑃𝐵𝐵𝐸𝐸𝑆𝑆𝑆𝑆𝑡𝑡 + ∑𝐷𝐷∈𝐵𝐵𝐿𝐿 𝑃𝑃𝑁𝑁𝐷𝐷

𝑡𝑡 + ∑𝐷𝐷∈𝐵𝐵𝑆𝑆 𝑃𝑃𝐶𝐶𝐸𝐸𝐸𝐶𝐶
𝑡𝑡,𝐷𝐷 (2)

𝑃𝑃𝑀𝑀𝐷𝐷𝑀𝑀𝐷𝐷𝐸𝐸 ≤ 𝑃𝑃𝑀𝑀𝐷𝐷𝑡𝑡 ≤ 𝑃𝑃𝑀𝑀𝐷𝐷𝑀𝑀𝐸𝐸𝐸𝐸 𝑀𝑀 ∈ 𝑆𝑆𝑀𝑀 , 𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇 (3)
𝑃𝑃𝑀𝑀𝐷𝐷𝑡𝑡+1 − 𝑃𝑃𝑀𝑀𝐷𝐷𝑡𝑡 ≤ ∆𝑇𝑇 � 𝑃𝑃𝑀𝑀𝐷𝐷

𝑅𝑅𝐸𝐸𝑅𝑅𝑅𝑅 𝑀𝑀 ∈ 𝑆𝑆𝑀𝑀 , 𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇 (4)
𝑃𝑃𝑀𝑀𝐷𝐷𝑡𝑡 − 𝑃𝑃𝑀𝑀𝐷𝐷𝑡𝑡+1 ≤ ∆𝑇𝑇 � 𝑃𝑃𝑀𝑀𝐷𝐷

𝑅𝑅𝐸𝐸𝑅𝑅𝑅𝑅 𝑀𝑀 ∈ 𝑆𝑆𝑀𝑀 , 𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇 (5)
𝑈𝑈𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡 + 𝑈𝑈𝐵𝐵𝐸𝐸𝑆𝑆𝑆𝑆𝑡𝑡 ≤ 1 (𝑀𝑀 ∈ 𝑆𝑆𝑀𝑀 , 𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) (6)
0 ≤ 𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡 ≤ 𝑈𝑈𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡 � 𝑃𝑃𝑀𝑀𝐶𝐶𝐷𝐷𝐺𝐺𝑀𝑀𝐸𝐸𝐸𝐸 𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇 (7)
0 ≤ 𝑃𝑃𝐵𝐵𝐸𝐸𝑆𝑆𝑆𝑆𝑡𝑡 ≤ 𝑈𝑈𝐵𝐵𝐸𝐸𝑆𝑆𝑆𝑆𝑡𝑡 � 𝑃𝑃𝑀𝑀𝐶𝐶𝐷𝐷𝐺𝐺𝑀𝑀𝐸𝐸𝐸𝐸 𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇 (8)
𝑈𝑈𝐵𝐵𝐷𝐷𝑠𝑠𝐸𝐸
𝑡𝑡,𝐷𝐷 + 𝑈𝑈𝐶𝐶𝐸𝐸𝐸𝐶𝐶

𝑡𝑡,𝐷𝐷 ≤ 1 (𝑀𝑀 ∈ 𝑆𝑆𝑀𝑀 , 𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) (9)
𝑈𝑈𝐶𝐶𝐸𝐸𝐸𝐶𝐶
𝑡𝑡,𝐷𝐷 � 𝑃𝑃𝐵𝐵𝐷𝐷𝑀𝑀𝐷𝐷𝐸𝐸 ≤ 𝑃𝑃𝐶𝐶𝐸𝐸𝐸𝐶𝐶

𝑡𝑡,𝐷𝐷 ≤ 𝑈𝑈𝐶𝐶𝐸𝐸𝐸𝐶𝐶
𝑡𝑡,𝐷𝐷 � 𝑃𝑃𝐵𝐵𝐷𝐷𝑀𝑀𝐸𝐸𝐸𝐸 𝑀𝑀 ∈ 𝑆𝑆𝐵𝐵, 𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇 (10)                       

𝑈𝑈𝐵𝐵𝐷𝐷𝑠𝑠𝐸𝐸
𝑡𝑡,𝐷𝐷 � 𝑃𝑃𝐵𝐵𝐷𝐷𝑀𝑀𝐷𝐷𝐸𝐸 ≤ 𝑃𝑃𝐵𝐵𝐷𝐷𝑠𝑠𝐸𝐸𝐵𝐵

𝑡𝑡,𝐷𝐷 ≤ 𝑈𝑈𝐵𝐵𝐷𝐷𝑠𝑠𝐸𝐸
𝑡𝑡,𝐷𝐷 � 𝑃𝑃𝐵𝐵𝐷𝐷𝑀𝑀𝐸𝐸𝐸𝐸 𝑀𝑀 ∈ 𝑆𝑆𝐵𝐵, 𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇 (11)                            

𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐷𝐷𝑡𝑡 = ⁄𝐸𝐸𝐵𝐵𝐷𝐷𝑡𝑡 𝐸𝐸𝐵𝐵𝐷𝐷𝑀𝑀𝐸𝐸𝐸𝐸 (𝑀𝑀 ∈ 𝑆𝑆𝐵𝐵, 𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) (12)
𝐸𝐸𝐵𝐵𝐷𝐷𝑡𝑡 − 𝐸𝐸𝐵𝐵𝐷𝐷𝑡𝑡−1 + ∆𝑇𝑇 � �𝑃𝑃𝐵𝐵𝐷𝐷𝑠𝑠𝐸𝐸

𝑡𝑡−1,𝐷𝐷 𝜂𝜂𝐵𝐵𝐷𝐷𝐵𝐵𝐷𝐷𝑠𝑠𝐸𝐸 − 𝑃𝑃𝐶𝐶𝐸𝐸𝐸𝐶𝐶
𝑡𝑡−1,𝐷𝐷𝜂𝜂𝐵𝐵𝐷𝐷𝐶𝐶𝐸𝐸𝐸𝐶𝐶 = 0 (𝑀𝑀 ∈ 𝑆𝑆𝑀𝑀 , 𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) (13)

𝐸𝐸𝐵𝐵𝐷𝐷𝑡𝑡=24 = 𝐸𝐸𝐵𝐵𝐷𝐷𝐼𝐼𝐸𝐸𝐷𝐷𝑡𝑡𝐷𝐷𝐸𝐸𝑆𝑆 (𝑀𝑀 ∈ 𝑆𝑆𝐵𝐵) (14)
𝑃𝑃𝑀𝑀𝐶𝐶𝐷𝐷𝐺𝐺𝑀𝑀𝐸𝐸𝐸𝐸 − 𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡 + 𝑃𝑃𝐵𝐵𝐸𝐸𝑆𝑆𝑆𝑆𝑡𝑡 + ∑𝑀𝑀 ∈ 𝐵𝐵𝐺𝐺 𝑃𝑃𝑀𝑀𝐷𝐷𝑀𝑀𝐸𝐸𝐸𝐸 − 𝑃𝑃𝑀𝑀𝐷𝐷𝑡𝑡 ≥ 𝑅𝑅𝑅𝑅𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 ∑𝐷𝐷∈ 𝐵𝐵𝐿𝐿 𝑃𝑃𝑁𝑁𝐷𝐷

𝑡𝑡 (𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) (15)

Objective function

Power balance equation for microgrid

Controllable Generation 

Power trading with main grid

Battery energy storage system 

Backup Constraint

Traditional objective function does not consider the equivalent battery degradation cost
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Battery Degradation Considered MDS (BDMDS)
New objective cost:  

Battery Degradation Cost Calculation:  

𝑓𝑓𝐵𝐵𝐸𝐸𝐵𝐵𝐵𝐵 =
𝑠𝑠𝐵𝐵𝐸𝐸𝐵𝐵𝐵𝐵
𝐶𝐶𝐸𝐸𝑅𝑅𝐷𝐷𝑡𝑡𝐸𝐸𝑆𝑆 − 𝑠𝑠𝐵𝐵𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝑃𝑃

1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝐷𝐷𝑁𝑁
𝐵𝐵𝐵𝐵

Cycle based Battery Usage Processing Method:
• For any continuous time intervals, if the operation status (charging or discharging) does not change, they 

will be aggregated as a single charging or discharging cycle.

𝑀𝑀𝐸𝐸 = (𝑇𝑇,𝐵𝐵, 𝑆𝑆𝑆𝑆𝐵𝐵,𝐵𝐵𝑆𝑆𝐵𝐵, 𝑆𝑆𝑆𝑆𝑆𝑆)
𝐵𝐵𝐵𝐵 = �

𝐸𝐸∈𝐴𝐴𝐶𝐶
𝑓𝑓𝑁𝑁𝑁𝑁(𝑀𝑀𝐸𝐸) 𝑆𝑆𝑆𝑆𝑆𝑆

𝑓𝑓 = 𝑓𝑓𝑀𝑀𝑀𝑀 + 𝑓𝑓𝐵𝐵𝐸𝐸𝐵𝐵𝐵𝐵

Equation (1)
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NNODH Solving Algorithm
Motivation:
• BDMDS optimization problem is hard to solve directly due the non-linear and non-convex of 

the NNBD model.
Proposed Algorithm:
• A neural network and optimization decoupled heuristic (NNODH) algorithm is proposed to 

effectively solve this neural network embedded optimization problem.
Start

End

Step A: Solve Microgrid Day-Ahead Scheduling 

Step E: Update 
BESS Operation 

Constraints

Step B: Obtain the BESS Schedule and 
Process it with the CBUP Method 

Step D: 
Stopping Criteria Met?

YES

No

Step C: Estimate Battery Degradation with the 
NNBD model and Calculate the Associated 

Equivalent Degradation Cost 

Fig. Illustration of the proposed NNODH algorithm. Fig. Flowchart
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Result Analysis

Fig. BDMDS Results of the NNODH-BCL method.
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Cycle Limit Linear BDC

Model
Daily BESS 
Degradati

on

Annual 
Degradati
on Cost ($)

Annual 
Cost 

Saving ($)

Expect
Lifetime 
(years)

MDS 0.02% 18,301.1 N/A 4.1
Cycle Limit 0.012% 12,540.8 6,205 6.8
Linear BDC 0.01% 8,832.5 6,935 8.2

BDMDS 0.0045% 3,920.1 11,151 18.3 

Table Model comparison

• The proposed iteration (NNODH) algorithm can obtain the 
optimal solution efficiently. 

• Compared with the traditional MDS models, the total cost 
can be reduced significantly by 5.82% with the proposed 
BDMDS model.

• The proposed model can reduce the daily BESS degradation 
significantly from 0.02% to 0.0045%.

Fig. BESS scheduled operations comparison.

Optimal 
Solution
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Hierarchical Deep Learning (HDL) Model
Motivation
• Previous NNBD model works well under different scenarios and have an accuracy of 94.5% on the 

degradation prediction at a 15% error tolerance. 
• However, the input of the NN only consist the ambient temperature, charging/discharging rate, SOC, 

DOD and SOH.
• The internal features such as internal temperature and internal resistance that are more likely to affect 

the battery degradation are ignored in the previous NN model. 

Proposed HDL model 
Includes two sequential and cohesive deep neural networks:

• DNN for unobtainable battery degradation features (DNN-
UBDF)

• DNN for battery degradation prediction (DNN-BDP)
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Hierarchical Deep Learning Model
Potential models for (DNN-UBDF)
Model # Inputs Outputs

1 SOC, DOD, Temp, C Rate, SOH IT
2 SOC, DOD, Temp, C Rate, SOH IR
3 SOC, DOD, Temp, C Rate, SOH IT, IR
4 SOC, DOD, Temp, C Rate, SOH IT, ELCN
5 SOC, DOD, Temp, C Rate, SOH IR, ELCN
6 SOC, DOD, Temp, C Rate, SOH IT, IR, ELCN

Model 
#

Inputs Outputs

1 IT, ELCN Degradation
2 IR, ELCN Degradation
3 SOC, DOD, Temp, C Rate, IT Degradation
4 SOC, DOD, Temp, C Rate, IR Degradation
5 SOC, DOD, Temp, C Rate, IT, ELCN Degradation
6 SOC, DOD, Temp, C Rate, IR, ELCN Degradation
7 SOC, DOD, Temp, C Rate, IT, SOH Degradation
8 SOC, DOD, Temp, C Rate, IR, SOH Degradation
9 SOC, DOD, Temp, C Rate, IT, SOH, ELCN Degradation

10 SOC, DOD, Temp, C Rate, IR, SOH, ELCN Degradation

Potential models for (DNN-BDP)

Error Tolerance 5% 10% 15% 20%
DNN-UBDF Model 1 45.25% 77.33% 88.63% 89.74%
DNN-UBDF Model 2 48.66% 78.37% 89.21% 90.59%
DNN-UBDF Model 3 37.96% 69.14% 85.47% 87.19%
DNN-UBDF Model 4 48.82% 73.86% 88.58% 91.23%
DNN-UBDF Model 5 51.05% 75.12% 89.90% 90.11%
DNN-UBDF Model 6 39.78% 65.61% 81.31% 83.74%

Error Tolerance 5% 10% 15% 20%
DNN-BDP Model 1 45.30% 77.57% 93.94% 97.89%
DNN-BDP Model 2 48.80% 82.16% 97.23% 99.89%
DNN-BDP Model 3 48.76% 82.04% 97.41% 99.91%
DNN-BDP Model 4 50.82% 79.37% 94.20% 99.91%
DNN-BDP Model 5 34.38% 65.57% 86.15% 95.91%
DNN-BDP Model 6 25.99% 59.11% 88.12% 97.76%
DNN-BDP Model 7 15.67% 21.66% 30.81% 45.85%
DNN-BDP Model 8 12.17% 18.85% 23.66% 30.82%
DNN-BDP Model 9 56.39% 88.87% 96.67% 97.07%

DNN-BDP Model 10 58.36% 91.56% 99.36% 99.99%

Training results of proposed models for DNN-BDPTraining results of proposed models for DNN-UBDF
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Results Analysis

Overall Efficiency Comparison
Error 

Tolerance 5% 10% 15% 20%

HDL-BDQ 37.4% 73.4% 91.7% 97.3%
NNBD 31.4% 57.0% 83.1% 97.3%
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• Results show the HDL-BDQ is more advanced than the 
single stage NNBD model since it requires less training 
data and achieves higher training accuracy (91.7% versus 
83.1% & 79.2%, with an error tolerance of 15%).

• The HDL-BDQ has also been validated in the microgrid
look ahead scheduling optimization problem using the 
iteration method.

• The proposed model creates a framework for battery 
degradation model. It can be extend to any types pf 
battery other than the lithium ion batteries. 

Fig. BESS scheduled operations comparison.
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Summary
• A set of battery cycle generators is designed to simulate battery degradation under 

different battery operational profiles.
• A neural network based battery degradation model is proposed to accurately predict 

the degradation.
• An NNODH algorithm is proposed to efficiently solve the battery degradation based 

MDS model that is hard to solve directly.
• Hierarchical Deep Learning Model is proposed to enhance the performance of the 

battery degradation prediction.

1. Cunzhi Zhao, Xingpeng Li, and Yan Yao, “Quality Analysis of Battery Degradation Models with Real Battery
Aging Experiment Data”, Texas Power and Energy Conference, College Station, TX, USA, Feb. 2023.

2. Cunzhi Zhao and Xingpeng Li, “Microgrid Optimal Energy Scheduling Considering Neural Network based
Battery Degradation”, IEEE Transactions on Power Systems, early access, Jan. 2023.

3. Cunzhi Zhao and Xingpeng Li, “Hierarchical Deep Learning Model for Degradation Prediction per Look-Ahead
Scheduled Battery Usage Profile”, IEEE Transactions on Smart Grid. (In preparation)
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1. Introductions
• Microgrid
• Battery Energy Storage System
• Energy management strategies
• Contributions and organization

2. BESS for Grid-Connected Microgrid
• Grid Friendly Microgrid
• Grid Supporting Microgrid

3. BESS for Isolated Microgrid
• Offshore Platform
• Resilience Operational Planning Algorithm

4. Microgrid Energy Management with Battery
Degradation Model
• Battery Degradation Data
• Deep Neural Network
• Microgrid Day-ahead Scheduling with NNBD

5. Piecewise Linearized BDMDS Model
• Relu Activation Function
• Linearization

6. Computational Enhancement of BDMDS Model
• ReLu Approximation Methods
• Sparse Neural Network

7. Conclusions & Future Works



Non-linearity of BDMDS Model
Motivation:
• Previous work shows the iteration (NNODH) algorithm is feasible for the BDMDS model.
• However, only 1 BESS is considered in the previous test cases.
• If we increase more BESS in the test case, we found the iteration (NNODH) algorithm

can not find the optimal solution anymore.

40

Proposed Piecewise Linearized BDMDS Model:
• The non-linear part in the BDMDS model is the NNBD model.

• “Relu” activation function

• Linear the non-linear “Relu” activation function. 𝑅𝑅𝑠𝑠𝑅𝑅𝑈𝑈(𝑀𝑀) = max(𝑀𝑀, 0)



Piecewise Linearized BDMDS Model
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𝑀𝑀𝐸
𝐷𝐷 = �𝑀𝑀𝐸−1

𝐷𝐷 ∗ 𝑊𝑊 + 𝐵𝐵𝑀𝑀𝑎𝑎𝑠𝑠

𝑎𝑎𝐸
𝐷𝐷 = 𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟 𝑀𝑀𝐸

𝐷𝐷 = 𝑝𝑝𝑎𝑎𝑀𝑀(0, 𝑀𝑀𝐸
𝐷𝐷 )

𝑎𝑎𝐸
𝐷𝐷 ≤ 𝑀𝑀𝐸

𝐷𝐷 + 𝐵𝐵𝑀𝑀𝐵𝐵𝑀𝑀 ∗ (1 − 𝛿𝛿𝐸
𝐷𝐷 )

𝑎𝑎𝐸
𝐷𝐷 ≥ 𝑀𝑀𝐸

𝐷𝐷

𝑎𝑎𝐸
𝐷𝐷 ≤ 𝐵𝐵𝑀𝑀𝐵𝐵𝑀𝑀 ∗ 𝛿𝛿𝐸

𝐷𝐷

𝑎𝑎𝐸
𝐷𝐷 ≥ 0

Neural Network Calculation

“relu” activation function

“relu” 
linearization

Proposed L-BD-Energy Scheduling method:
• Linearized BD-Energy Scheduling Problem
• The non-linear activation function “relu” is 

linearized by the proposed formulations. 
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Validation in Microgrid Test Case



Multi-BESS System Result
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The proposed model can also be applied in 
the bulk power system.

IEEE 24-bus test systems with 5 BESSs
Fuel Cost ($) BD Cost ($) Total Cost ($)

Traditional-Energy
Scheduling 256,404.60 34,643.80 291,048.40 

L-BD-Energy
Scheduling 258,448.90 20,348.10 278,797.00 

Reduction -0.80% 41.30% 4.21%
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Figure. Output power of BESS #4 at bus 14.

Optimization Mipgap
Total Cost 

($) 
Degradation 

Cost ($)
Solving 
Time (s)

0.1 302,843.2 19,515.2 47.2 
0.01 278,797.0 20,348.1 357.2 

0.001 278,777.4 20,338.3 3600 
0.0001 278,774.5 20,338.5 3600 

0 278,774.5 20,338.5 3600 

Table Relative mipgap tests on 5-BESS system.

Table Results for IEEE-24 bus system.
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Summary
• Linearized L-BD-Energy Scheduling model

• The “ReLU” activation function is reformulated to be linear.
• The proposed L-BD-Energy Scheduling model that considers the equivalent 

battery degradation cost is directly solvable. 

1. Cunzhi Zhao and Xingpeng Li, “An Alternative Method for Solving Security-Constraint Unit Commitment
with Neural Network Based Battery Degradation Model”, 54th North American Power Symposium, Salt
Lake City, UT, USA, Oct. 2022.
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1. Introductions
• Microgrid
• Battery Energy Storage System
• Energy management strategies
• Contributions and organization

2. BESS for Grid-Connected Microgrid
• Grid Friendly Microgrid
• Grid Supporting Microgrid

3. BESS for Isolated Microgrid
• Offshore Platform
• Resilience Operational Planning Algorithm

4. Microgrid Energy Management with Battery
Degradation Model
• Battery Degradation Data
• Deep Neural Network
• Microgrid Day-ahead Scheduling with NNBD

5. Piecewise Linearized BDMDS Model
• Relu Activation Function
• Linearization

6. Computational Enhancement of BDMDS Model
• ReLu Approximation Methods
• Sparse Neural Network

7. Conclusions & Future Works



ReLu Approximation Methods
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Motivation:
• The solving time take too long due to the heavy computing burden for L-BDMDS model.

Proposed Methods:
• Convex triangle area relaxation (CTAR)
• Penalized CTAR (P-CTAR)
• Penalized convex area relaxation (PCAR).

Figure. CTAR Illustration. Figure. P-CTAR Illustration. Figure. PCAR Illustration.



ReLu Approximation Methods Formulation
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Figure. CTAR. Figure. P-CTAR. Figure. PCAR.

𝑎𝑎h
𝐷𝐷 ≤ 𝑀𝑀h

𝐷𝐷 + 𝐵𝐵𝑀𝑀𝐵𝐵𝑀𝑀 ∗ (1 − 𝛿𝛿h
𝐷𝐷 )

𝑎𝑎h
𝐷𝐷 ≥ 𝑀𝑀h

𝐷𝐷

𝑎𝑎h
𝐷𝐷 ≤ 𝐵𝐵𝑀𝑀𝐵𝐵𝑀𝑀 ∗ 𝛿𝛿h

𝐷𝐷

𝑎𝑎𝐸𝐷𝐷 ≥ 0
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The proposed model can also be applied in the bulk power system.

Figure. P-CTAR model degradation comparison.

Table MDS Results.
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Motivation:
• The L-BD-MDS model in previous chapter is proved to be a feasible model for multi-BESS

problems.
• The solving time take too long due to the heavy computing burden.

Proposed Sparse Neural Network Assisted BDMDS
• Train the Sparse Neural Network base on the existing NNBD model.

• Pruning method.

• Reduce the computing burden.
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Table Solving efficiency comparisonTable Training accuracy comparison 
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Summary

1. Cunzhi Zhao and Xingpeng Li, “Sparsity Neural Network Assisted Microgrid Day-ahead scheduling Considering Battery
Degradation” IEEE Transactions on Power Systems, Sep. 2023 (Under Review).

2. Cunzhi Zhao and Xingpeng Li, “Linearization of ReLU Activation Function for Neural Network-Embedded Optimization:
Optimal Day-Ahead Energy Scheduling” Electric Power System Research (PSCC special issue), Sep. 2023 (Under Review).

• Relu Linearization Approxiamtion Method:
• Improve the computation efficiency for NNBD embedded optimization problem.

• Sparsity Neural Network
• Reduce the complexity of the NNBD model.
• Improving computational efficiency.
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Future Works
• Grid-integrated battery operational profile-based aging test; model: LSTM.
• Transfer learning for different types of battery.

o Train a ML model (M1) for a given type of battery.
o Use M1 as the starting model for training other types of battery: less data are 

required for training and testing process.
• Hydrogen Energy Storage System:

o Develop the HESS model that can be integrated into the MDS problem.
o Degradation model for HESS can be formulated using similar strategies.

• Continue working on the Impact of BESS on power energy markets:
o LMP, load payment, generator cost, generator revenue, congestion cost, 

generator uplift payment, reserve cost.
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Thank you!

Cunzhi Zhao
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