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The Elements of Power System 

A power system is an electrical network of interconnected elements that 
are used to generate, transmit, and consume electric power. It contains 
various types of elements:

• Generators

• Loads

• Transmission lines

• Transformers

• Phase shifters

• Circuit breakers

• Shunts

• HVDC

• … …

Generation

Transmission 
& Distribution

Consumption

https://figshare.com/articles/online_resource/ECE6379_PSOM_zip/17161805
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Energy Balance

Ideal Scenario:  
The total power generated in a 
power system should match the total 
power consumed by the loads. 

Real Situation: 
• fluctuations in load demand, 
• power losses in transmission and 

distribution
• uncertainties in renewable energy 

generation

https://figshare.com/articles/online_resource/ECE6379_PSOM_zip/17161805
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Power System Management

Power system management problems can be divided into a few groups based 
on time-scale:

• 5-40 years: power system expansion planning

• 1-3 years: maintenance scheduling for large equipment, long-term bilateral 
contracts, generation capacity commitment

• 1 day - 1 week: maintenance scheduling for medium and small equipment; power 
system operational planning

• 1 day: day-ahead scheduling (through SCUC) 

• 5-30 minutes: contingency analysis, look-ahead dispatching

• < 1 minute: system control, frequency regulation, stability

https://figshare.com/articles/online_resource/ECE6379_PSOM_zip/17161805
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Power System Frequency

• Generators rotate in synchronism to produce 
electric power.

• Frequency: the speed of rotation of synchronized 
generators.

• measured in cycles per second, or Hertz (Hz).

• Normal situations: generation and load are 
balanced

• Rotate speed: 60 cycles per second. 

• The nominal system frequency : 60 Hz.

[Reference] NERC, “Balancing and Frequency Control”, a technical document prepared by the NERC Resources Subcommittee, January 26, 2011.
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Problem Setup

Figure. Percentage of U.S. electricity generation from clean energy resources from 2001 to 2035 

[Reference] D. Lew, J. Bakke, A. Bloom, P. Brown, J. Caspary, C. Clack, N. Miller, A. Orths, A. Silverstein, J. Simonelli, and R. Zavadil, ``Transmission planning for 100% clean electricity: Enabling clean, 
affordable, and reliable electricity,'' IEEE Power Energy Mag., vol. 19, no. 6, pp. 5666, Nov. 2021.

• 1) Units with governor providing primary 
frequency response are replaced by non-
dispatchable units

•  2) non-dispatchable, asynchronous (converter-
based) units present low to zero contribution to the 
total inertia of the system.

• Estimation of system inertia provides more 
information for system operation.

• Impose extra constraints in the conventional SCUC 
model to secure frequency stability.
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Contributions and Organization

•Estimates the 

dynamic system 
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Work

•Deep learning-

based frequency 

metrics tracking

•Dynamic pruning 

in DNN-based 
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linearization 
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Linearized 
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Neural 

Network 

Based FCUC

Deep 

Learning 

based RCUC

Machine 

Learning 

Assisted 

Inertia 

Estimation
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Power System Inertia
Inertia in power systems refers to the energy stored in 
large rotating synchronized generators and some 
industrial motors.

Figure. Synchronized generators within a system

[Reference] P. Denholm, T. Mai, R. W. Kenyon, B. Kroposki, and M. O’Malley. Inertia and the Power Grid: A Guide Without the Spin. Tech. rep. National Renewable Energy Laboratory, 2020

𝐸𝑠𝑦𝑠 = ෍

𝑖=1

𝑁
1

2
J𝑖𝜔𝑖

2 = ෍

𝑖=1

𝑁

𝐻𝑖𝑆𝐵𝑖

Inertia (MWs): kinetic energy Ei stored in the 
rotating shaft of a synchronous generator

Ei =
1

2
 Ji ωn

2

Inertia constant(s): ratio of kinetic energy of a 
rotor of a synchronous machine to the rating of a 
machine.

Hi =
Ei

Si
=

1
2

 Ji ωn
2

Si
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Traditional Inertia Estimation

The pilot bus (representing COI) cannot be 
able to capture the entire characteristics.

System operators measure the frequency at 
some relevant pilot bus of the system.

𝐸𝑠𝑦𝑠 =
−∆𝑃

2
𝑑𝜔
𝑑𝑡

∙ 𝜔0

Factors impact inertia estimation:
• 1) disturbance level ∆𝑃
• 2) location of measurement bus relative to 

in-feed disturbance

• 3) method of RoCoF calculation
𝑑𝜔

𝑑𝑡

Figure. Frequency dynamics on generator buses in IEEE-
24 bus system



12

Inertia Distribution Index
• Following one disturbance, the electrical 

distance from an estimated bus k  to COI 
then be calculated below:

𝑑𝑘 = න
𝑡0+𝑡𝑑

𝑇+𝑡0+𝑡𝑑

(𝑓𝑘 𝜏  − 𝑓𝐶𝑂𝐼 𝜏 )2𝑑𝜏

• Inertia distribution index (IDI):

𝐼𝐷𝐼𝑘  =
𝑑𝑘

max
𝑘∈{1,..,𝑛}

𝑑𝑘

The set of COI area buses over period 𝑇𝑤𝑖𝑛 is 
then defined as:

𝑆𝐶𝑂𝐼
𝑇𝑤𝑖𝑛 = 𝑘𝑡:  𝑑𝑖𝑠𝑡 𝑓𝑡

𝑘
, 𝑓𝑡

𝑘𝐶𝑂𝐼
≤ 𝛿, 𝑡 ∈ 𝑇𝑤𝑖𝑛

where 𝑓𝑡
𝑘𝐶𝑂𝐼

 is the frequency measurements 

on COI bus 𝑘𝐶𝑂𝐼

𝑘𝐶𝑂𝐼 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝐼𝐷𝐼𝑘)
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Dynamic Inertia Estimation

Fig.2 Center of inertia area estimation in IEEE 24-
bus system. 
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Fig.1 System inertia estimation process on events. 
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Dynamic Inertia Estimation
Following a disturbance event, the pilot bus is 
selected as the initial point in the COI area cluster 
set. 

𝑑𝑓𝑒𝑠𝑡

𝑑𝑡
 =

𝐶𝑘

𝐶𝑝+𝐶𝑘
∙

𝑑𝑓𝑘

𝑑𝑡
+

𝐶𝑝

𝐶𝑝+𝐶𝑘
∙

𝑑𝑓𝑝

𝑑𝑡
, 𝑝, 𝑘 ∈ 𝑆𝐶𝑂𝐼

𝑇𝑤𝑖𝑛

𝐻𝑟𝑒𝑎𝑙

(MWs)

𝐻𝐶𝑂𝐼

(MWs)
%𝐻𝑑𝑖𝑓

𝐶𝑂𝐼 𝐻𝑝𝑟𝑜𝑝

(MWs)
%𝐻𝑑𝑖𝑓

𝑝𝑟𝑜𝑝

31525.0 30044.6 -4.70% 30600.9 -2.93%
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Fig.1 COI area of  case with 20% RES penetration level.

Table Results of Inertia Estimation 

𝑘𝐶𝑂𝐼
𝑇𝑤𝑖𝑛 = arg max

𝑘∈ 1,..,𝑛
𝐶𝑘

Where 𝐶𝑘 is the count of bus 𝑘 identified as a bus of 
the COI area. 
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Summary

• Dynamic inertia estimation method based on COI area is proposed.

• Sensitivity test is then conducted to determine the optimal time length of 
integration period. 

• The proposed inertia estimation method is more robust and accurate for 
estimating system inertia distribution

1. Mingjian Tuo and Xingpeng Li, “Dynamic Estimation of Power System Inertia Distribution Using 
Synchrophasor Measurements”, 2020 52nd North American Power Symposium (NAPS), Apr. 2021, 
pp. 1-6, doi: 10.1109/NAPS50074.2021.9449713.
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System Dynamics

Power mismatch event process:

• Frequency drop from nominal 
value

• Deviation measurement is fed 
into closed control droop 

• Turbine-governor counteracts 
the power mismatch 

Figure. Generator transfer function model.

Measurements:
• Frequency
• Analogue voltage 
• Current wave  
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Wide Area Monitoring System

Conventional Supervisory Control and Data 
Acquisition (SCADA) systems

• Steady information system

• Resolution between 1 and 10 s.

GPS

PMU

Phasor Data 
Concentrator

PMU PMU

PMU

Application Software

System Control Center

Figure.  Example of WAMS.

Wide Area Monitoring System (WAMS)
• Phasor Measurement Unit (PMU)
• Time-synchronized information.

• Reporting rates: 10-240 samples per second.
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Probing Signal Method

Figure.  A sample of probing signal, ambient 
measurements for 𝑃𝐸=0.001 p.u.

Low level probing signal method has 
been conventionally used for generator 
dynamic studies

(Excitation signals with 100 different values of 𝑃𝐸  from 
0.001 p.u. to 0.01 p.u. with an increment 0.001 p.u. 
were used)

Measurements:
• Frequency deviations
• RoCoF measurements
• Voltage dynamics
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Inertia Estimation Using LRCN
• Long-term recurrent convolutional 

network (LRCN) is used to process 
temporal input data and identify spatial 
features of ambient wide measurements.

• The neural network based systemwide 
inertia estimator ෠ℎ can be expressed as

• where 𝑥 is the input feature vector, and 
𝑊 and 𝑏 denote the parameters of a well-
trained LRCN model. 

• Forward propagation equation (LRCN):

መ𝐼 = ෠ℎ(𝑥, 𝑊, 𝑏)

Output Layer 

CNN

𝑝 × 𝑟 × 1

CNN

𝑞 × 𝑠 × 1

LSTM

l

Input (𝑏 × 𝑐)

Hidden Layer

Flatten Layer

𝑓 × 1

൯ℎ𝑡 = (1 − 𝑧𝑡 ∗ ℎ𝑡−1 +  𝑧𝑡 ∗ ℎ𝑡

𝑧𝑡 = 𝜎 𝑊𝑓 ℎ𝑡−1, 𝑥𝑡 +  𝑏𝑓

Figure. LRCN Topology.
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Inertia Estimation Using GCN

• Power system is an interconnected 
network of generators and loads. 

• The graph structure of the power system 
consists of nodes (buses) and edges 
(branches). 

• Undirected graph represents power 
system

𝒢 = (𝒱, ℰ)

𝑉 = ෩𝐷−
1
2 ሚ𝐴 ෩𝐷−

1
2

where ሚ𝐴 = 𝐴 + 𝐼𝑁 represents an 
adjacency matrix with self-connections

𝐴𝑖𝑗 = ቐ
1;  𝑖𝑓 𝒱𝑖 , 𝒱𝑗 ∈ 𝑉, 𝒱𝑖 𝒱𝑗 ∈ 𝐸

0;  𝑖𝑓 𝒱𝑖 , 𝒱𝑗 ∈ 𝑉, 𝒱𝑖 𝒱𝑗 ∉ 𝐸

The diagonal degree matrix ෩𝐷 for 𝒢 is 

defined as ෩𝐷𝑖𝑖 = σ𝑗
ሚ𝐴𝑖𝑗

𝐹𝑙 𝑋, 𝐴 = 𝜎 𝑉𝐹 𝑙−1 𝑋, 𝐴 𝑊𝑘
𝑙 + 𝑏𝑙

Forward propagation equation of graph 
convolutional networks (GCN):
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Results Analysis

Features Set Δ𝜔 ∆ ሶ𝜔 Δ𝜔 + ∆ ሶ𝜔
Δ𝜔 + ∆ ሶ𝜔 

+ 𝑣

Validation 

Accuracy
80.30% 96.89% 97.34% 95.76%

MSE 0.296 0.032 0.025 0.030

Coefficient of 

Determination
0.8945 0.9585 0.9725 0.9564

Table
Comparison of Different Features Sets for LRCN

• Optimal Combination: 
      Δ𝜔 and ∆ ሶ𝜔

• Highest validation accuracy: 
97.34%  (tolerance 0.5s )

Optimal Feature Combination 
Selection:
• Training dataset: 80%
• Validation dataset: 20%
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Comparison of Models
Table I 

Comparison of Models with Optimal Feature Combination

• Combination of Δ𝜔 and ∆ ሶ𝜔

• GCN has the highest validation 
accuracy 98.15%

Model
Validation 

Accuracy

Coefficient of 

Determination
MSE

DNN 93.45% 0.9224 0.058

CNN 95.18% 0.9369 0.045

LRCN 97.34% 0.9725 0.025

GCN 98.15% 0.9826 0.020

Model w/o SNR w/ SNR at 45dB

DNN 93.45% 90.84%

CNN 95.18% 92.13%

LRCN 97.34% 93.25%

GCN 98.15% 93.87%

Table II Comparison of Models with SNR at 45dB
Signal to noise ratio (45dB)

• Combination of Δ𝜔, ∆ ሶ𝜔, and 𝑣

• GCN models: higher robustness
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Summary

• LRCN and GCN based learning algorithms are proposed to estimate system 
inertia constant

• The proposed LRCN model and GCN model also show high robustness 
under conditions with higher noises

• The approaches can also be applied to estimate inertia constant in realistic 
conditions

1. Mingjian Tuo and Xingpeng Li, “Long-term Recurrent Convolutional Networks-based Inertia 
Estimation using Ambient Measurements,” in 2022 IEEE IAS Annual meeting, Oct. 2022.

2. Mingjian Tuo and Xingpeng Li, “Machine Learning Assisted Inertia Estimation using Ambient 
Measurements,” IEEE Transactions on Industrial Applications, April. 2023.
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Basic SCUC Model
• We consider a power network comprising of G 

generating units, N loads, K branches, N buses.

• Optimization Problem:

Additional frequency related 
constraints are needed

[Reference] Mingjian Tuo and Xingpeng Li, “Security-Constrained Unit Commitment Considering Locational Frequency Stability in Low-Inertia Power Grids” , IEEE Transaction on 
Power System, Oct 2022.

Figure. System frequency during the power disruption, August 2019

[Reference] August 2019 Power Disruption in Great Britain System Report. 
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System Dynamic Model

Using the topological information and system parameters, 
the oscillatory behavior of each individual bus,

𝑚𝑖
ሷ𝜃𝑖 + 𝑑𝑖

ሶ𝜃𝑖  =  𝑝𝑖𝑛,𝑖  −  𝑝𝑒,𝑖                         (1)

𝑝𝑒,𝑖 = σ𝑗=1
𝑛 𝑏𝑖𝑗 𝜃𝑖  −  𝜃𝑗 , 𝑖 ∈ 1, … , 𝑛     (2)

Figure. Frequency dynamics on generator buses in IEEE-24 bus 
system

By combining (1) and (2) and eliminating passive load 
buses, a network-reduced model (Kron Reduction) with N 
generator buses. 

𝑀 ሷ𝜃  +  𝐷 ሶ 𝜃  =  𝑃 − 𝐿 𝜃

where 𝐿 is the Laplacian matrix of the reduced grid and it is 
real and symmetric.

The actual need for frequency ancillary services 
would be underestimated, leading to higher 
perceived nodal RoCoF.𝑀

𝑑 △ 𝜔

𝑑𝑡
+ 𝐷 △ ω = 𝑃𝑚 − 𝑃𝑒

System Equivalent/Uniform Model (inaccurate)
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Nodal RoCoF Expression

The RoCoF 𝑅𝑖 𝑡  on bus 𝑖 can be calculated as:

𝑅𝑖 𝑡 =
∆𝑃𝑒−

𝛾𝑡
2

2𝜋𝑚
෍

𝛼=1

𝑁
𝜷𝜶𝒊𝜷𝜶𝒃

𝜆𝛼
𝑚

−
𝛾2

4
∆𝑡

× 𝑒−
𝛾∆𝑡

2 sin
𝜆𝛼

𝑚
−

𝛾2

4
𝑡 + ∆𝑡 − sin

𝜆𝛼

𝑚
−

𝛾2

4
𝑡

• 𝜷𝜶𝒊 is defined as Fiedler mode that affects the locational 
frequency dynamics. 

• Higher oscillations occur on buses with large absolute value of 
Fiedler mode (𝜷𝜶𝒊).
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Locational frequency constraints (LRC)
G-1 contingency of largest generation is considered as the worst contingency in this 
study. 
• Mismatch in system power balance.
• Decreases the system synchronous inertia, resulting in higher frequency deviation 

and larger initial RoCoF. 

• Then RoCoF constraints considering ∆𝑃𝑙𝑜𝑠𝑠 can be defined as:

∆𝑃𝑙𝑜𝑠𝑠𝑒−𝛾
𝑡
2 1 − 𝑒−𝛾∆𝑡

2𝑁𝜋 𝑚 − ∆𝑚 𝛾∆𝑡
+

∆𝑃𝑙𝑜𝑠𝑠𝑒−𝛾
𝑡
2

2𝜋 𝑚 − ∆𝑚
×

𝜷𝟐𝒊𝜷𝟐𝒃

𝜆2
𝑚 − ∆𝑚 −

𝛾2

4 ∆𝑡

𝑒−𝛾
∆𝑡

2 sin
𝜆2

𝑚−∆𝑚
−

𝛾2

4
𝑡 + ∆𝑡 − sin

𝜆2

𝑚−∆𝑚
−

𝛾2

4
𝑡 ≤ −𝑅𝑜𝐶𝑜𝐹𝑙𝑖𝑚 (0.5 Hz/s)
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LRC-SCUC Model

Objective function

𝑚𝑖𝑛 ෍
𝑔∈𝐺

෍
𝑡∈𝑇

(𝑐𝑔𝑃𝑔𝑡 + 𝑐𝑔
𝑁𝐿𝑢𝑔𝑡 + 𝑐𝑔

𝑆𝑈𝑣𝑔𝑡 + 𝑐𝑔
𝑅𝐸 𝑟𝑔,𝑡)

Additional constraints:

𝑝𝑔,𝑡𝑒−𝛾
𝑡
2 1 − 𝑒−𝛾∆𝑡

2𝑁𝑚𝑔𝑡𝜋𝛾∆𝑡
+

𝑝𝑔,𝑡𝑒−𝛾
𝑡
2

2𝜋𝑚𝑔𝑡𝑡

𝛽2𝑛𝛽2𝑏

𝜆2
𝑚𝑔𝑡

−
𝛾2

4 ∆𝑡

𝑒−𝛾
∆𝑡
2 sin

𝜆2

𝑚𝑔𝑡
−

𝛾2

4
𝑡 + ∆𝑡 − sin

𝜆2

𝑚𝑔𝑡
−

𝛾2

4
𝑡 ≤ −𝑅𝑜𝐶𝑜𝐹𝑙𝑖𝑚, ∀𝑛 ∈ 𝑁𝑛𝑙, 𝑔 , 𝑡

𝒇 𝒙
where 𝑚𝑔𝑡 is the average 

nodal inertia of in period t:
𝑚𝑔𝑡 =

σ𝑗∈𝐺 2𝐻𝑗𝑘𝑗,𝑡 − 2𝐻𝑔𝑘𝑔,𝑡

𝑁𝜔0
 ∀g, 𝑡,

non-linear constraints
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Piecewise Linearization
A least squares based piecewise linearization (PWL) 
technique is employed to formulate a RoCoF linearization 
problem. 

𝑚𝑖𝑛
𝛹

෍

𝜂

𝑚𝑎𝑥
1≤𝜈≤𝑞

𝑤𝑣𝑥 + 𝑑𝑣 − 𝑓 𝑥
2

 

𝜂 denotes the evaluation point

𝛹 denotes 𝑤𝑣, 𝑎𝑣 for 1 ≤ 𝑣 ≤ 𝑞

𝑚𝑖𝑛
𝛹

෍

𝜂

𝑡𝑞 − 𝑓 𝑥
2

 

s.t. 𝑤1𝑥 + 𝑑1 ≤ 𝑡1 ≤ 𝑤1𝑥 + 𝑑1 + 𝜀1𝑀 , ∀𝜂

𝑤2𝑥 + 𝑑2 ≤ 𝑡1 ≤ 𝑤2𝑥 + 𝑑2 + 1 − 𝜀1 𝑀 , ∀𝜂

𝑡𝑣−1 ≤ 𝑡𝑣 ≤ 𝑡𝑣−1 + 𝜀2𝑀 , ∀𝜂, 𝑣 ≥ 2

𝑤𝑣+1𝑥 + 𝑑𝑣+1 ≤ 𝑡𝑣 ≤ 𝑤𝑣+1𝑥 + 𝑑𝑣+1 + 1 − 𝜀2 𝑀 , ∀𝜂, 𝑣 ≥ 2

Define new ancillary variables:

𝑡1 = 𝑚𝑎𝑥{ 𝑤1𝑥 + 𝑑1, 𝑤2𝑥 + 𝑑2}

𝑡𝑣 = 𝑚𝑎𝑥{ 𝑡𝑣−1, 𝑤𝑣+1𝑥 + 𝑑𝑣+1} , 𝑣 ≥ 2

Figure. RoCoF of bus 21 following a G-1 contingency.



SCUC Models Settings

Proposed model:

• location based RoCoF constrained SCUC  (LRC-
SCUC)

Benchmark models:

• Traditional SCUC (T-SCUC)

• Does not consider any frequency related 
constraints.

• System equivalent model based RoCoF constrained 
SCUC (ERC-SCUC)

• Consider system-wide frequency constraints

• ignore the inter-area oscillations.
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Fig. 1 Impact of RoCoF constraints on the total 
system inertia.

𝐸𝑠𝑦𝑠 =
−𝑃𝐺

2 ∙ 𝑅𝑜𝐶𝑜𝐹𝑙𝑖𝑚
∙ 𝜔0 ≥ 𝐸𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

Fig. 2 System frequency response after loss of the 

generator with the largest generation.
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Time Domain Simulation
Table Highest RoCOF [Hz/s] monitored under 

different scenarios at peak hour

Model
RES Penetration Level

20% 40% 60% 80%

T-SCUC 1.26 1.32 1.45 1.65

ERC-SCUC 0.74 0.65 0.63 0.61

LRC-SCUC 0.34 0.38 0.42 0.46

• ERC-SCUC and T-SCUC models:

• The highest RoCoF violates the prescribed 
threshold (0.5 Hz/s).

• Lower total cost in all scenarios.

Figure.  RoCoF violation gaps for different scenarios.

33

• Proposed LRC-SCUC model:

• The highest RoCoFs over all buses are all within 
the safe range. 

• Extra operational cost.

• Low-cost virtual inertia services, the system total 
cost can be significantly reduced.

• Transient Stability Analysis Tools (TSAT)



Inertial Response

Fig. 2 RoCoF of all buses following the loss of largest 
generation in LRC-SCUC case.

• Benchmark ERC-SCUC: the highest locational RoCoF (0.7 Hz/s) violates the RoCoF security limit. 
• Proposed LRC-SCUC: the highest locational RoCoF is 0.43 Hz/s, meeting the RoCoF security 

requirement.

Fig. 1 RoCoF of all buses following the loss of largest 
generation in ERC-SCUC case.
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Summary

• Locational RoCoF Constrained-SCUC (LRC-SCUC) is proposed in this chapter

• Frequency dynamics model on reduced system are derived

• RoCoF related constraints are proposed and incorporated into SCUC 

• RoCoF stability on all buses are secured. The impact of oscillations within 
the system is well handled

1. Mingjian Tuo and Xingpeng Li, “Optimal Allocation of Virtual Inertia Devices for Enhancing Frequency Stability in 
Low-Inertia Power Systems”, 53rd North American Power Symposium (NAPS), Nov. 2021, College Station, TX, USA.

2. Mingjian Tuo and Xingpeng Li, “Security-Constrained Unit Commitment Considering Locational Frequency Stability in 
Low-Inertia Power Grids” , IEEE Transactions on Power Systems, Oct 2022, Early Access Online .
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1. Introductions
2. Physics-based Inertia Estimation
3. Machine Learning Assisted Inertia 

Estimation
4. Physics-based Locational RoCoF-

constrained Unit Commitment
5. Deep Learning based RCUC
6. Active Linearized Sparse Neural Network 

based FCUC

7. Conclusion and Future Work



Mathematical Programing-based 
Scheduling

• ERC-SCUC model

• LRC-SCUC model

Disadvantages of mathematical programming-based (MP-based) scheduling:

• Rely on the low-order model approximation that cannot be able to capture the entire characteristics

• These methods cannot incorporate high-order models. Nonlinearities in system frequency response such as 
deadbands, and saturations cannot be taken into considerations.

𝑀
𝑑 △ 𝜔

𝑑𝑡
+ 𝐷 △ ω = 𝑃𝑚 − 𝑃𝑒

Conservative!
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Dynamic validation, and update UC model iteratively!



NN-based Scheduling

DNN has the ability to amend the limitations of MP-based 
approaches. The neural network based systemwide RoCoF 

predictor ෠ℎ can be expressed as:

𝒇 𝒙

෠𝑅 = ෠ℎ(𝑥, 𝑊, 𝑏)

Where, 𝜎(𝑥) = max(𝑥, 0)

where x denotes the feature vector, and W and b denote the 
neural network parameters to be trained.

ℎ1 = 𝑥1𝑊1 + 𝑏1

෠ℎ𝑚 = ℎ𝑚−1𝑊𝑚 + 𝑏𝑚

ℎ𝑚 = 𝑚𝑎𝑥(෠ℎ𝑚, 0)

෠𝑅 = ℎ𝑛𝑊𝑛 + 𝑏𝑛

Replace

[Reference] Arun Venkatesh Ramesh and Xingpeng Li, “Machine Learning Assisted Model Reduction for Security Constrained Unit Commitment”, North American Power 
Symposium, Salt Lake City, UT, USA, Oct. 2022.
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Features Settings (DNN/CNN)

Input Features:

• The generator status feature vector 𝑢𝑠

• The magnitude and location of the 
contingency 𝜛𝑠

𝐺

A big-M method is introduced to express the 
disturbance vector

• The active power injection of 
synchronous generator 𝑃𝑠.

𝑥𝑠 = 𝑢𝑠 𝜛𝑠
𝐺 𝑃𝑠

𝑢𝑠 = 𝑢1,𝑠, 𝑢2,𝑠, ⋯ , 𝑢𝑁𝐺,𝑠

𝜛𝑠
𝐺 = 0 ⋯ 0 ด𝑃𝑠

𝜛

𝑔𝑠
𝜛𝑡ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

0 ⋯ 0

𝑃𝑠
𝜛 = 𝑚𝑎𝑥

𝑔∈𝐺
𝑃1,𝑠, ⋯ ,𝑃2,𝑠, ⋯ ,𝑃𝑁𝐺,𝑠

𝑹𝒆𝑳𝑼(𝒙) = 𝒎𝒂𝒙(𝒙, 𝟎)

𝑥𝑠 = 𝑢1,𝑠 ⋯ 𝑢𝑁𝐺,𝑠  𝜀𝑔,𝑠 ⋯  𝜀𝑁𝐺,𝑠 𝑃1,𝑠 ⋯ 𝑃𝑁𝐺,𝑠

𝑧1 = 𝑥𝑠𝑊1 + 𝑏1

Ƹ𝑧𝑞 = 𝑧𝑞−1𝑊𝑞 + 𝑏𝑞

𝑧𝑞 = max( Ƹ𝑧𝑞 , 0)

𝑅ℎ,𝑠 = 𝑧𝑁𝐿
𝑊𝑁𝐿+1 + 𝑏𝑁𝐿+1

New Input Features:
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Incorporation of NN model

NN-RCUC:
NN is incorporated into MILP problems by 

introducing auxiliary binary variables 𝑎𝑖,𝑗,𝜖,𝑠
𝑞

. 

Figure. Architecture of proposed CNN model 
(Created using tool NN-SVG).

𝑧𝑖,𝑗,𝜖,𝑠
𝑞

≤ Ƹ𝑧𝑖,𝑗,𝜖,𝑠
𝑞

+ 𝐴(1 − 𝑎𝑖,𝑗,𝜖,𝑠
𝑞

), ∀𝑞, ∀𝜖, ∀𝑠, ∀𝑖, ∀𝑗,

𝑧𝑖,𝑗,𝜖,𝑠
𝑞

≥ Ƹ𝑧𝑖,𝑗,𝜖,𝑠
𝑞

, ∀𝑞, ∀𝜖, ∀𝑠, ∀𝑖, ∀𝑗,

𝑧𝑖,𝑗,𝜖,𝑠
𝑞

≤ 𝐴𝑎𝑖,𝑗,𝜖,𝑠
𝑞

, ∀𝑞, ∀𝜖, ∀𝑠, ∀𝑖, ∀𝑗,

𝑧𝑖,𝑗,𝜖,𝑠
𝑞

≥ 0, ∀𝑞, ∀𝜖, ∀𝑠, ∀𝑖, ∀𝑗,

𝑎𝑖,𝑗,𝜖,𝑠
𝑞

∈ 0, 1 , ∀𝑞, ∀𝜖, ∀𝑠, ∀𝑖, ∀𝑗,

40

𝑹𝒆𝑳𝑼(𝒙) = 𝒎𝒂𝒙(𝒙, 𝟎)



Test Case of DNN-RCUC
Model Total Cost [$]

Computational 

Time [s]

Highest 

RoCoF [Hz/s] 

T-SCUC 1486556.34 13.58 0.8053

ERC-SCUC 1494430.99 20.24 0.6145

LRC-SCUC 1615135.45 35.25 0.5634

DNN-RCUC 1641966.76 368.58 0.4985

Table Comparison of Different Models

Figure. RoCoF evolution of DNN-RCUC model.

• IEEE 24-bus system (33 generators), PSS/E

• MP-based models:

• Lower total cost.

• Approximation error may result in violations

• DNN-RCUC model (4 periods constrained):

• Maintain RoCoF within safe range following 
contingency of generator loss. 

• MP-based models cannot ensure system RoCoF 
security under same situation. 

• Computational time increased 
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Test Case of CNN-RCUC

Fig. 1 Uniform RoCoF evolution of all cases.

• CNN-RCUC model:

• Maintain RoCoF within safe range following contingency of generator loss. 

• MP-based models cannot ensure system RoCoF security under same situation. 

Fig. 2 Nodal RoCoF evolution of all cases.
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Summary

• DNN/CNN-RCUC have better performance than physics-based approaches such 
as ERC-SCUC and LRC-SCUC

• Data-driven approaches maintain the RoCoF within safe range with less 
conservativeness (computational time increases). 

• The proposed data generation method can avoid divergency during time 
domain simulation

1. Mingjian Tuo and Xingpeng Li, “Deep Learning based Security-Constrained Unit Commitment Considering 
Locational Frequency Stability in Low-Inertia Power Systems”, 54th North American Power Symposium (NAPS), 
Oct. 2022, pp. 1-6.

2. Mingjian Tuo and Xingpeng Li, “Active ReLU Linearized Neural Network based Frequency-Constrained Unit 
Commitment in Low-Inertia Power Systems”, 55th North American Power Symposium (NAPS). (Submitted)

3. Mingjian Tuo and Xingpeng Li, “Convolutional Neural Network based Frequency-Constrained Unit Commitment 
in Low-Inertia Power Systems” , Electric Power Systems Research (EPSR), 2023 . (In Preparation)
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Frequency Metrics Constraints
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Ordinary SCUC model: 

min.  𝒞(𝑠𝑡, 𝑢𝑡)  

𝑠. 𝑡.  ℱ 𝑠𝑡 , 𝑢𝑡 , 𝑑𝑡 , 𝑟𝑡 = 0, 𝒢 𝑠𝑡 , 𝑢𝑡 , 𝑑𝑡 , 𝑟𝑡 ≤ 0, ∀𝑡 

መ𝑓𝑑𝑒𝑣

መ𝑓𝑟𝑐𝑓
= ෠ℎ𝑓 𝑥𝑡,𝑊𝑓,𝑏𝑓

෠ℎ𝑓 𝑠𝑡 , 𝑢𝑡, 𝑟𝑡, 𝜛𝑡 ≤ 𝜀

Formulation of stability related constraints:

𝑧1 = 𝑥𝑡𝑊1 + 𝑏1

Ƹ𝑧𝑞 = 𝑧𝑞−1𝑊𝑞 + 𝑏𝑞

𝑧𝑞 = max ( Ƹ𝑧𝑞 , 0)

መ𝑓𝑑𝑒𝑣 = 𝑧𝑁𝐿
𝑊𝑁𝐿+1

𝑑𝑒𝑣 + 𝑏𝑁𝐿+1
𝑑𝑒𝑣

መ𝑓𝑟𝑐𝑓 = 𝑧𝑁𝐿
𝑊𝑁𝐿+1

𝑟𝑐𝑓
+ 𝑏𝑁𝐿+1

𝑟𝑐𝑓

• Forward propagation of NN

Multi-predictions

Multiple system stability metrics: RoCoF + Nadir + ...



Dynamic Pruning
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Trade off:

Gradually increasing the sparsity of the network allows the 
network training steps to recover from pruning-induced loss in 
accuracy. 

𝑠𝑒 = 𝑠𝑓𝑖𝑛𝑎𝑙 + 𝑠0 − 𝑠𝑓𝑖𝑛𝑎𝑙 1 −
𝑒 − 𝑒0

𝜇∆𝑒

3

for  𝑒 ∈ 𝑒0, 𝑒0 + ∆𝑒, … , 𝑒0 + 𝜇∆𝑒 

Efficiency:
The sparsity of the parameter matrix is increased from an initial 
sparsity value 𝑠0 to a final sparsity value 𝑠𝑓𝑖𝑛𝑎𝑙 over a span of 𝜇 

pruning steps with pruning frequency ∆𝑒



Active ReLU Linearization
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Large approximation error and low prediction 
accuracy

• Active ReLU Linearization (partially 
linearized)

• Nodal positivity index

Approximation of ReLU function reduces the number 
of  introduced binary variables. 

𝑧𝑞[𝑙],𝑠 ≥ Ƹ𝑧𝑞[𝑙],𝑠, ∀𝑞, ∀𝑙, ∀𝑠,

𝑧𝑞[𝑙],𝑠 ≤
𝑈𝐵𝑞[𝑙] ∙ ( Ƹ𝑧𝑞[𝑙],𝑠 − 𝐿𝐵𝑞[𝑙])

𝑈𝐵𝑞[𝑙] − 𝐿𝐵𝑞[𝑙]
, ∀𝑞, ∀𝑙, ∀𝑠,

𝑧𝑞[𝑙],𝑠 ≥ 0, ∀𝑞, ∀𝑙, ∀𝑠,

𝜀𝑞[𝑙] = 
1

𝑁𝑆
෍

𝑁𝑆

Ƹ𝑧𝑞[𝑙],𝑠 − ෍

𝑁𝑆

Ƹ𝑧𝑞[𝑙],𝑠 −
1

𝑁𝑆
෍

𝑁𝑆

Ƹ𝑧𝑞[𝑙],𝑠 ≥ 𝛿

𝑧1 = 𝒙𝑡𝑊1 + 𝑏1, ∀𝑡,

𝑧𝑞[𝑙],𝑡 ≥ Ƹ𝑧𝑞[𝑙],𝑡, ∀𝑞, ∀𝑙 ∈ ℋ, ∀𝑡,

𝑧𝑞[𝑙],𝑡 ≤
𝑈𝐵𝑞 𝑙 ∙ ( Ƹ𝑧𝑞[𝑙],𝑡 − 𝐿𝐵𝑞 𝑙 )

𝑈𝐵𝑞 𝑙 − 𝐿𝐵𝑞 𝑙
, ∀𝑞, ∀𝑙

∈ ℋ, ∀𝑡,

The neuron of each layer with positivity index 𝜀𝑞[𝑙] 

larger than 𝛾 is selected out and added into set ℋ
Linear equations replace mixed integer linear equations:



ALSNN-FCUC Formulations
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𝑚𝑖𝑛
𝛷

෍

𝑔 ∈𝐺

෍

𝑡 ∈𝑇

(𝑐𝑔𝑃𝑔,𝑡 + 𝑐𝑔
𝑁𝐿𝑢𝑔,𝑡 + 𝑐𝑔

𝑆𝑈𝑣𝑔,𝑡 +𝑐𝑔
𝑅𝐸 𝑟𝑔,𝑡)  

෍

𝑔 ∈𝐺

𝑃𝑔,𝑡 + ෍

𝑘 ∈𝐾 𝑛−

𝑃𝑔,𝑡 − ෍

𝑘 ∈𝐾 𝑛+

𝑃𝑔,𝑡 − 𝐷𝑛,𝑡

+ 𝐸𝑛,𝑡  =  0, ∀𝑛, 𝑡

𝑃𝑘,𝑡 − 𝑏𝑘(𝜃𝑛,𝑡 − 𝜃𝑚,𝑡)  =  0, ∀𝑘, 𝑡

−𝑃𝑘
𝑚𝑎𝑥  ≤ 𝑃𝑘,𝑡 ≤ 𝑃𝑘

𝑚𝑎𝑥, ∀𝑘, 𝑡

𝑃𝑔
𝑚𝑖𝑛𝑢𝑔,𝑡  ≤ 𝑃𝑔,𝑡, ∀𝑔, 𝑡

𝑃𝑔,𝑡 + 𝑟𝑔,𝑡  ≤  𝑢𝑔,𝑡𝑃𝑔
𝑚𝑎𝑥, ∀𝑔, 𝑡

0 ≤  𝑟𝑔,𝑡  ≤  𝑅𝑔
𝑟𝑒𝑢𝑔,𝑡, ∀𝑔, 𝑡

෍

𝑗 ∈𝐺

𝑟𝑗,𝑡  ≥ 𝑃𝑔,𝑡 + 𝑟𝑔,𝑡, ∀𝑔, 𝑡

…

𝑧𝑞[𝑙],𝑡 ≤ Ƹ𝑧𝑞 𝑙 ,𝑡 − 𝐴(1 − 𝑎𝑞 𝑙 ,𝑡), ∀𝑞, 𝑙 ∈ ഥℋ, 𝑡,

𝑧𝑞[𝑙],𝑡 ≥ Ƹ𝑧𝑞 𝑙 ,𝑡, ∀𝑞, ∀𝑙 ∈ ഥℋ, ∀𝑡,

𝑧𝑞[𝑙],𝑡 ≤ 𝐴𝑎𝑞 𝑙 ,𝑡, ∀𝑞, ∀𝑙 ∈ ഥℋ, ∀𝑡,

𝑧𝑞[𝑙],𝑡 ≥ 0, ∀𝑞, ∀𝑙, ∀𝑡,

𝑎𝑞 𝑙 ,𝑡 ∈ 0, 1 , ∀𝑞, ∀𝑙, ∀𝑡,

𝑧𝑁𝐿,𝑡𝑊𝑁𝐿+1
𝑑𝑒𝑣 + 𝑏𝑁𝐿+1

𝑑𝑒𝑣 ≤ 𝑓𝑛𝑜𝑚 − 𝑓𝑙𝑖𝑚

𝑧𝑁𝐿,𝑡𝑊𝑁𝐿+1
𝑟𝑐𝑓

+ 𝑏𝑁𝐿+1
𝑟𝑐𝑓

≤ −𝑅𝑜𝐶𝑜𝐹𝑙𝑖𝑚

Basic Formulations:
Frequency related constraints (NN):

𝑧1 = 𝒙𝑡𝑊1 + 𝑏1, ∀𝑡,

𝑧𝑞[𝑙],𝑡 ≥ Ƹ𝑧𝑞[𝑙],𝑡, ∀𝑞, ∀𝑙 ∈ ℋ, ∀𝑡,

𝑧𝑞[𝑙],𝑡 ≤
𝑈𝐵𝑞 𝑙 ∙ ( Ƹ𝑧𝑞[𝑙],𝑡 − 𝐿𝐵𝑞 𝑙 )

𝑈𝐵𝑞 𝑙 − 𝐿𝐵𝑞 𝑙
, ∀𝑞, ∀𝑙

∈ ℋ, ∀𝑡,

Active Linearized Sparse Neural Network based FCUC



Results Analysis
Settings (PSSE 35.0):
• GENROU and GENTPJ for the synchronous machine; 
• IEEEX1 for the excitation system; 
• IEESGO for the turbine-governor; 
• PSS2A for the power system stabilizer. 
• Standard WTG and corresponding control modules are 

employed. 
The FCUC is performed using Pyomo and Gurobi on a 
window laptop with Intel(R) Core(TM) i7 2.60GHz CPU and 
16 GB RAM.
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Fig. 1 RoCoF prediction accuracy with different NN sparsity.  
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Fig. 2 Frequency deviation prediction accuracy with different 
NN sparsity.  

• The predictor trained by active sampled dataset has higher 
robustness against sparsity 



Computational Time of MILP Model
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Total Number of 

Constrained Hour 
4 8 12 16 20 24

DNN-RCUC 23 268 523 NA NA NA

ALSNN-FCUC 8 14 50 143 254 1223

Table Computational Time [s] of Different Constrained 
Intervals

• Highest sparsity could lead to no-binding constraints 
and lowest computational time.

• Proposed active sampled dataset has higher 
robustness against sparsity.

Time Limit: 7200 s
Without sparse computation and active linearization 
process, computational time increases exponentially.

Constraints bindingness (hour 10 constrained)



Time Domain Simulation
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Table 
Comparison of Different Models (hour 10 constrained)

• High sparsity could lead to no-binding constraints
• Active sampled dataset has higher robustness against 

sparsity (60%)

The proposed ALSNN-FCUC model can secure 
frequency stability with high efficiency

Model 
Total Cost 
[$]

Computational 

Time [s]

ሶ𝑓𝑚𝑎𝑥 

[Hz/s] 
∆𝑓𝑚𝑎𝑥 [Hz]

T-SCUC 419,935 3.89 1.05 0.51

ERC-SCUC 420,171 4.53 0.60 0.29

LRC-SCUC 425,929 6.05 0.44 0.23

DNN-FCUC 422,497 22.56 0.50 0.24

SNN-FCUC 421,922 16.56 0.50 0.23

ALSNN-FCUC 421,985 8.56 0.50 0.24 Figure. RoCoF evolution of ALSNN-FCUC model under worst 
contingency at hour 10.
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Summary

• The proposed ALSNN-FCUC approach incorporates sparse computations to 
perform parameter selection.

• An active ReLU linearization method is performed over selected neurons to 
further improve the model efficiency. 

• Results show that the model can maintain the system frequency related 
constraints under worst contingency while reducing the computational time

1. Mingjian Tuo and Xingpeng Li, “Sparsity Neural Network based Frequency-Constrained Unit Commitment with 
Region-of-Interest Active Sampling,” IEEE Transactions on Power Systems, (Under review).
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1. Introductions
2. Physics-based Inertia Estimation
3. Machine Learning Assisted Inertia 

Estimation
4. Physics-based Locational RoCoF-

constrained Unit Commitment
5. Deep Learning based RCUC
6. Active Linearized Sparse Neural Network 

based FCUC

7. Conclusion and Future Work



Conclusions
• Current inertia estimation methods are limited by the accuracy of the measurements and the relative              

location of disturbance.

• Inertia distribution index is used as metric for inertia distribution analysis. Dynamic inertia estimation 
method based on COI area is proposed.

• Data driven inertia estimation approaches using wide area measurements, robustness of the proposed 
model has been tested under noisy condition.

• Equivalent/Uniform model cannot capture nodal characteristics. Dynamics model based on reduced 
system is proposed, nodal RoCoF expressions and related constraints are derived.

• LRC-SCUC model has been formulated. The highest RoCoFs over all buses are contained within the safe 
range, however the conservativeness issues are observed.

• DNN-RCUC/CNN-RCUC are introduced to maintain RoCoF within safe range with much less 
conservativeness (efficiency issues). 

• ALSNN-FCUC model incorporates sparse computations to perform parameter selection and increase neural 
network sparsity, while securing frequency stability. 
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Future Work

• Implemented of GNN based method to relieve some constraints such as line 
congestions/generator status for efficiency for NN-SCUC.

• Variable reduction of SCUC could be implemented by predicting generator status 
and line loading factor using machine learning algorithms.

• Incorporation of inverter-based sources such as virtual machine and demand side 
synchronous motors.

• Proposed work can handle other dynamic performance such as voltage, steady 
state frequency.

• Data related weather patterns and scenarios can be studied.
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Thank you!

Mingjian Tuo
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