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ABSTRACT 

            Conventional synchronous generators are gradually being replaced by low-

inertia inverter-based resources. Such transition introduces more complicated 

operation conditions. Insufficient system inertia would lead to dramatical change in 

rate of change of frequency (RoCoF) and further results in under frequency load 

shedding as well as tripping of generator protection devices.  

            Inertia estimation can ensure the accountability and reliability of inertia 

response through implementation of frequency control ancillary services. Existing 

power system inertia estimation approaches do not take such heterogeneity into 

consideration, and the risk of estimation error introduced by uniform model-based 

approach is underestimated. Hence, strategies such as dynamic inertia estimation 

method and machine learning-assisted inertia estimation approaches are introduced. 

            Frequency related constraints have been imposed in the conventional security-

constrained unit commitment (SCUC) model to keep the minimum amount of 

synchronous inertia online and secure system frequency stability. However, in a large 

system inertia distribution may vary significantly, areas of low inertia are more 

susceptible to frequency deviation following G-1 contingency, posing risks of load 

shedding and generation trip. To address these issues in frequency constrained SCUC, 

ensuring locational frequency stability, two novel strategies are proposed in this thesis: 

(1)  A novel location based RoCoF constrained SCUC (LRC-SCUC) model that can 

capture the locational frequency response characteristics and counteract the im-

pact of system oscillation, guaranteeing the RoCoF security following a G-1 
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disturbance. A multiple-measurement-window method is introduced in this work 

to constrain highest value during oscillation. Simulation results demonstrate the 

effectiveness of proposed LRC-SCUC model. The results also show that deploying 

virtual inertia techniques not only reduces the total cost, but also improves the 

system market efficiency. 

(2) A generic data-driven frequency and RoCoF predictor is first trained to predict 

maximal frequency deviation and the highest locational RoCoF simultaneously 

based on a high-fidelity simulation dataset.  And the derived frequency related 

constraints are then incorporated into machine learning assisted SCUC to 

guarantee frequency stability following the worst generator outage case while 

ensuring operational efficiency. In addition, sparse computation and an active 

rectified linear unit (ReLU) linearization method are implemented to further 

improve the algorithm efficiency while retaining solution quality. 
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NOMENCLATURE 

                Sets and indices: 

𝐺 Set of generators. 

𝐺𝑛 Set of generators connected to bus n. 

𝐾 Set of lines. 

𝐾+(𝑛) Set of lines with bus n as receiving bus. 

𝐾−(𝑛) Set of lines with bus n as sending bus. 

𝑇 Set of time periods. 

𝑁 Set of buses. 

𝑁𝐺  Set of generator buses. 

𝑁𝑙𝑜𝑐,𝑔 Set of local generator buses for generator g. 

𝑁𝑛−𝑙𝑜𝑐,𝑔 Set of non-local generator buses for generator g. 

𝑔 Generator 𝑔. 

𝑘 Line 𝑘. 

𝑡 Time 𝑡. 

𝑛 Bus 𝑛. 

𝑁𝑆 Set of samples. 

𝑁𝐿 Set of neural network layers. 

ℋ Set of active selected neurons. 

ℋ̅ Set of not selected neurons. 

𝑞 Neural network layer 𝑞. 
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l l-th neuron of a neural network layer. 

s Sample s. 

 

 

                Parameters: 

𝑐𝑔 Linear operation cost for generator 𝑔. 

𝑃𝑔
𝑚𝑖𝑛 Minimum output limit of generator 𝑔. 

𝑃𝑔
𝑚𝑎𝑥 Maximum output limit of generator 𝑔. 

𝑃𝑘
𝑚𝑎𝑥 Long-term thermal line limit for line 𝑘. 

bk Susceptance of line 𝑘. 

𝐷𝑛,𝑡 Forecasted demand at bus n in period 𝑡. 

𝐸𝑛,𝑡 Forecasted renewable generation at bus n in period 𝑡. 

𝑅𝑔
ℎ𝑟 Ramping limit of generator 𝑔.   

𝑅𝑔
𝑟𝑒  Reserve ramping limit of generator 𝑔. 

𝐻𝑔 Inertia constant of conventional generator 𝑔. 

𝑐𝑔
𝑁𝐿 No load cost for generator 𝑔. 

𝑐𝑔
𝑆𝑈 Startup cost of generator 𝑔. 

𝑐𝑔
𝑅𝐸 Reserve cost of generator 𝑔. 

𝑐𝑛 Nodal cost for additional inertia at bus 𝑛. 

∆𝑡 Frequency monitoring window. 

𝑛𝑇 Number of time periods. 
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𝑀𝑡
𝑇𝑜𝑡𝑎𝑙      Virtual inertia budget. 

𝛺  A big real number. 

𝑇1 First frequency measuring point. 

𝑇2 Second frequency measuring point. 

𝑅𝑜𝐶𝑜𝐹𝑙𝑖𝑚 Pre-specified RoCoF threshold. 

𝐷𝑇𝑔 Minimum down time of generator 𝑔. 

𝑈𝑇𝑔 Minimum on time of generator 𝑔. 

𝑛𝑇 Number of time periods. 

𝐴  A big real number. 

𝑓nom System frequency nominal value. 

𝑓lim Pre-specified minimal frequency threshold. 

𝑊𝑞 Weights matrix of layer 𝑞. 

𝑏q Bias matrix of layer 𝑞. 

𝑊𝑁𝐿+1
𝑑𝑒𝑣  Weights matrix of last layer for maximal frequency deviation prediction. 

𝑊𝑁𝐿+1
𝑟𝑐𝑓

 Weights matrix of last layer for maximal RoCoF prediction. 

𝑏𝑁𝐿+1
𝑑𝑒𝑣  Bias matrix of last layer for maximal frequency deviation prediction. 

𝑏𝑁𝐿+1
𝑟𝑐𝑓

 Bias matrix of last layer for maximal RoCoF prediction. 

𝑈𝐵𝑞(𝑙) Upper bound of preactivated value of 𝑙-th neuron of layer 𝑞. 

𝐿𝐵𝑞(𝑙) Lower bound of preactivated value of 𝑙-th neuron of layer 𝑞. 
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                Variables: 

𝑃𝑔,𝑡 Output of generator g in period 𝑡. 

𝑚𝑔,𝑡 Average nodal inertia in period t after loss of generator 𝑔. 

∆𝑚𝑔,𝑡 Change in average nodal inertia in period t after loss of generation. 

𝑚𝑡  Average nodal inertia in period 𝑡. 

𝑟𝑔,𝑡 Reserve from generator g in period t. 
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1. INTRODUCTION 

1.1 Background 

              Power system is an electrical network which consists of generation, 

distribution and transmission system. Main components within a power system 

include, but not limited to, generators, loads, transmission lines, transformers, phase 

shifters, circuit breakers, and shunts. As energy cannot be economically stored on a 

large scale. Electricity must be generated, transported, and consumed simultaneously 

within a power system. Therefore, it is very challenging to maintain reliable real-time 

operations of modern power systems. 

              Power system operations falls into several time horizons, including day-ahead 

scheduling and real-time system control. The energy production is a multi-period 

problem, typically spanning 24 hours, to meet the demand at each hourly interval in 

advance. The formulations of the model are convex and linear expressions to ensure 

that a global optimal solution can be obtained. Given the load forecast and renewable 

generation prediction, the production of energy can be obtained by solving an 

economical operational problem subject to multiple physical restrictions such as 

Kirchhoff's laws, and network limits. Generators have constraints related to ramping 

rates, minimum up-down times, and reserve margins. This process would provide 

information on the status and dispatch points of generators within each time interval, 

which is also known as unit-commitment (UC).  

              Contingency may result in system violations, islanding, irreversible damage 

to electrical equipment, and in the worst-case a blackout. Therefore, it’s important to 
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ensure system stability under the condition of potential contingency. The guidelines of 

NERC (North American Reliability Council) standard 51 describes that the solution of 

the UC requires an N-1 reliability criterion [1]. To ensure uninterrupted power supply 

in the event of generator or line failures, it is necessary to plan and operate the power 

system in a manner that can accommodate contingencies. To meet this requirement, 

system operators typically employ the security-constrained unit commitment (SCUC) 

approach for generator dispatch and commitment. However, the inclusion of security 

constraints in SCUC leads to higher operational costs compared to the standard unit 

commitment (UC) approach. 

1.2 Motivations 

              Governments around the world are adopting clean energy goals to limit 

carbon dioxide emissions and combat climate change. Due to the characteristics of 

environmental benefits and growing cost-competitiveness, the penetration level of 

renewable energy resources (RES) has significantly increased in the last decades. The 

total global installed capacity has increased by a factor of about 6 for wind power and 

a factor of 40 for solar power in the past decade [2]. Such transition has also 

accelerated the retirement of traditional coal-based plants and changed the investments 

in energy portfolios.  

              Synchronous generators used to play an important role in system operation, a 

number of mandatory standards for power system reliability have been developed 

based on the characteristics of synchronous generator dominant system. Complying 

with these standards secure the system stability. However, with the influx of inverter-
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based RES, the dynamics of traditional system have been totally changed. With the 

uncertainty nature of RES such as intermittency in wind and solar generation, modern 

power systems are more complex and dynamical. Traditionally, synchronous 

generators could provide inertia to the system through stored kinetic energy in rotating 

mass which can counteract frequency excursion during disturbances and thus enhance 

the frequency stability. However, RESs are interfaced to the grid through converters 

which electrically decouples the rotor’s inertia from the whole system [3]. Such 

inverter-based resources contribute little synchronous inertia to the whole system, 

which is even true for wind power plants taking advantage of kinetic energy stored in 

wind turbines. With more generation coming from converter-based resources, 

insufficient inertia would be a main challenge for power systems stability. 

            Frequency and related metrics have been used to estimate the stability of the 

system, while closed-form stability conditions for ancillary services procuring could 

deduced from the swing equation [4]. The system equivalent model for frequency 

analysis is a simplification of the actual frequency dynamics in a power grid, where 

the one-machine swing equation is extended to the whole system by using the system 

average inertia constant 𝐻 (Center of Inertia concept), and load damping is modelled 

as a single constant 𝐷. The parameters in the model are typically represented by an 

aggregated of all components within the system, not including any effect of network 

topology, generator location, the impedance of tie-lines and RES generator and control 

characteristics. However, only considering the system equivalent model would 

underestimate the actual need for frequency ancillary services, leading to unexpected 
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contingency. Different from focusing on the collective performance of the power 

system, the RoCoF experienced by each bus is distinct. Relative location of 

measurement point to disturbance is a pertinent factor in system inertial response and 

the RoCoF is usually higher for location where networks are weakly interconnected 

[5]. The impact of disturbance propagation on post-contingency frequency dynamics 

and locational frequency security against N-1 contingency can be derived and 

incorporated into SCUC formulations.  

              Energy storage technologies, such as largescale batteries system, have been 

considered to provide ancillary services, such as virtual inertia, to address the 

aforementioned issues in the power system. By emulating the characteristics of 

traditional mechanical inertia using power electronic devices and control strategies, 

power electronic devices, such as grid-connected inverters can mimic the inertial 

response of synchronous generators. These control strategies involve monitoring the 

system frequency and responding to frequency deviations by dynamically adjusting 

the power output. By implementing virtual inertia, power systems can improve their 

ability to respond to disturbances and maintain stable operation. The synthetic inertia 

provided by renewable energy sources and other grid-connected devices helps to 

dampen frequency fluctuations and enhance system resilience. It helps maintain grid 

stability and support the reliable operation of the overall power system while reducing 

the preventive operational cost. In addition, the demand side also experiences 

significant changes over the past years with increased demand patterns, demand 

response strategies have made this transfer bi-directional and could potentially 
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improve system security.  Therefore, more advanced operational strategies and system 

analysis approaches are required to handle such transition in the system and ensure the 

system stability.  

              The development of PMU based wide area measurements systems (WAMS) 

have enabled data-driven techniques in power system analysis [6]. Through leveraging 

collected data, deep learning algorithms have been widely used on works such as 

decision-support, prediction and automation to help operators improve system 

performance. Applying machine learning (ML) to solve these challenging situations is 

critical for development of clean and green energy of the future and it could help 

achieve a reasonable statistical evaluation of the risk. Applications of ML toward 

renewable energy have been widely researched and studied in recent years.  

              Compared to traditional computational approaches, machine learning 

algorithms have an intrinsic generalization capability with greater computational 

efficiency and scalability. Since machine learning algorithms have the ability to learn 

complex nonlinear input-output relationships, reflexively adapting themselves to the 

data, they have been used to predict variables within the power system. There are two 

broad types of problems namely, regression and classification. The regression models 

estimate continuous values whereas classification models approximate a mapping 

function from input variables to identify classifications and categories. Modern power 

systems are connected to different devices which provide frequency regulation service, 

the estimation of frequency related metrics based on low-order model approximation 
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may be inaccurate. Regression models have been used to capture the entire 

characteristics and track frequency related metrics for system state estimation. 

1.3 Summary of contents 

              The rest of this dissertation is structured as follows. A thorough literature 

review is presented in Chapter 2. In this chapter, the specifics of system identification 

and extraction of inertia values is described. Then, the method of dynamic inertia 

distribution estimation and total system inertia calculation are detailed. At the end of 

this chapter, the simulation results on the test system and the concluding remarks are 

presented. 

              In Chapter 3, the frequency dynamics of power systems are first described. 

The proposed inertia estimation algorithms using long-term recurrent convolutional 

network (LRCN) and graph convolutional neural networks (GCN) techniques are 

compared. Simulation setup is detailed. Case studies show that that the proposed 

models have better performances than the benchmark deep neural models, and the 

proposed models also show high robustness under conditions with higher noises. The 

proposed optimal phasor measurement units (PMUs) placement method has been 

proved to be capable of improving the performance of all implemented models. 

              In Chapter 4, the fundamentals of the post-contingency frequency dynamics 

of reduced model are first derived, and the corresponding analytic expressions are then 

incorporated into the SCUC model. 𝐺 − 1  contingency at different locations is 

investigated to implement the non-linear location based RoCoF constraints, and the 

PWL method is utilized to linearize those non-linear location based RoCoF 
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constraints. Case studies show that imposing location based RoCoF constraints in the 

SCUC model can ensure the locational frequency security during worst-case 

contingency event. 

              Chapter 5 first discusses the power system mathematical based model. The 

methodology of model-based data generation is detailed. Training dataset is generated 

from models over various scenarios, and deep neural network based RoCoF predictors 

are trained based on the high-fidelity simulation dataset. The locational RoCoF-

limiting constraints are then derived based on the RoCoF predictor. And a set of 

mixed-integer linear constraints are used to reformulate the nonlinear constraints. 

Time domain simulation results on PSS/E demonstrate the effectiveness of the 

proposed algorithms. 

              Chapter 6 studies both the frequency deviation stability and RoCoF security. 

DNN-based frequency metrics predictor is used to track the locational RoCoF and 

maximal frequency deviation simultaneously. The corresponding frequency 

constraints are incorporated into the traditional SCUC model. The efficiency of the 

machine learning assisted FCUC is discussed. The concept of sharing parameters and 

sparse neural network are introduced to improve the efficiency of proposed model. 

Besides, an active rectified linear unit (ReLU) linearization method is implemented to 

further improve the algorithm efficiency while retaining solution quality. 

              Finally, Chapter 7 concludes this dissertation and presents potential future 

work.   
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2. PHYSICS-BASED INERTIA ESTIMATION 

              Inertia plays a critical role in the stability and operation of power systems, as 

it provides a buffer against disturbances and helps maintain the frequency within 

acceptable limits. Modern systems are required to accommodate an increasing volume 

of RES, these changes have led to a decrease in the overall system inertia, which is 

primarily attributed to the reduced rotational inertia provided by traditional 

synchronous generators. In addition, due to the physical characteristics of these 

resources, their interaction with the grid is substantially different from the interaction 

of the traditional synchronous generators which have steam and hydro turbines. While 

the rotating parts of the synchronous generators inherently contribute inertia to the 

system, converter-based resources are decoupled from the system via power 

electronics.  

              In order to maintain operational security of the power system, its frequency 

must be within a predefined range, and the deviation should be not far from the 

nominal frequency. In the case of large production units tripping and supply/demand 

imbalances, the inertia that originally slows down the frequency deviations is 

significantly reduced, resulting in much higher rate of change of frequency (RoCoF) in 

systems. The reduction in system inertia also reduces the time for primary control to 

take actions. Frequency would then drop to an unacceptable level, further causing in 

the disconnection of production units and loads, producing a cascade effect, which 

may lead to widespread power outages.  
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              Since the frequency ancillary services are becoming more complicated and 

less predictable. It is therefore necessary to gain an improved understanding of both 

the inertial frequency response of the power system and the security of the system in 

near to real-time. Inertia estimation could ensure the impact of incidents to specific 

areas of the network is understood, facilitating more economically efficient operation 

of the power system. Dynamic analysis is used to study the response of the power 

system to disturbances and analyzing the frequency deviations. By observing the 

frequency response, system operators and analysts can estimate the effective inertia in 

the system. Reference [7] proposed an inertia estimation approach which divides the 

system into multiple subareas and estimates inertia of each subarea separately, but the 

approximation made in mathematical model introduces additional errors. The Electric 

Reliability Council of Texas (ERCOT) uses a real-time sufficiency monitoring tool to 

monitor inertia based on the operating plans submitted by the generation resources [8]. 

2.1 Power System Inertia 

              Power system inertia estimation is the process of quantifying the total inertia 

present in a power system. Inertia is a measure of the rotating mass and energy stored 

in synchronous generators, and it plays a crucial role in the stability and dynamic 

behavior of the system. Traditionally, the inertia of synchronous generators in a power 

system can be estimated based on their physical characteristics, such as their moment 

of inertia and rated power. These values are typically provided by manufacturers or 

obtained through measurements and can be used to calculate the total inertia of the 

synchronous generators connected to the system. 
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2.1.1 Inertia of a single machine 

              Conventional synchronous generators play a significant role in system 

frequency regulation; the inertia provided by synchronous generators help the power 

system to resist changes in system frequency. For a single rotating machine, the 

nominal inertia of it is equal to its kinetic energy in megawatt seconds (MWs) at rated 

speed, which is determined by the moment of inertia and rotational speed,  

𝐸𝑖 =  
1

2
𝐽𝑖𝜔𝑖

2 (2.1) 

where 𝐽𝑖 is the moment of inertia of a generator and turbine [kg ∙ m2], 𝜔𝑛 is the rate 

mechanical angular velocity of the rotor [rad/s], 

              The inertia of a single rotating shaft is commonly measured by its inertia 

constant, which is the per-unit value of inertia depending on the base value of the rated 

apparent power. Which can be express as, 

𝐻𝑖  =  
𝐽𝑖𝜔𝑖

2

2𝑆𝐵𝑖

, (2.2) 

where 𝑆𝐵𝑖
 is the rate apparent power if the generator [VA], 

Sometimes moment of inertia of a turbine-generator is given in gravimetric units 𝐺𝐷2. 

Gravimetric units can be converted to joules using, 

𝐽𝑖  =  
𝐺𝐷2

4
, (2.3) 

where 𝐺𝐷2 is the moment of inertia [kg ∙ m2]. 
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2.1.2 Inertia of the system 

              The frequency response of the power system is determined by the total stored 

kinetic energy within the system. All synchronously connected generators contribute 

to this resistance with rotational energy stored in rotating mass. System inertia is then 

defined as the summation of kinetic energy stored in connected synchronous units, 

which is defined as follows, 

𝐸𝑠𝑦𝑠 = ∑
1

2
J𝑖𝜔𝑖

2

𝑁

𝑖=1

. (2.4) 

              Synchronous condensers (SC) and induction motor provide a viable 

alternative to the inertia provided by synchronous generation [2]. Because 

synchronous condenser is a rotational machine, the kinetic energy stored in its rotating 

mass is available as an active power source [9]. SC can be used to inject or absorb the 

rotational energy to enhance the system frequency stability for the system frequency 

regulation in the event of contingency, the inertia of the SC can be calculated in a 

similar way as generators. Induction motor loads also plays an important role in 

modern power system. They connected synchronously to power system also contribute 

to system inertia and can be taken into account.   

2.2 System Frequency Stability 

              As a fundamental health measure of power systems, the nominal grid 

frequency of North American is 60 Hz. In a power grid, hundreds or thousands of 

generators are synchronized, and grid frequency is determined by how fast these 

conventional generators spin, which reflects the ability of a grid to balance generation 
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and demand. The ability of a system to maintain within a narrow range under normal 

conditions and to recover from disturbance is often referred to as frequency stability. 

Ever-changing load and generation profiles will cause power imbalance and frequency 

deviations. When system frequency drops to a low level, it may impose vibratory 

stresses on the turbine blades and reduce the outputs of boiler feed pumps or fans [10]. 

To protect generators from low-frequency operational conditions, under-frequency 

protective relays are involved so that generators will be tripped off when the frequency 

falls below a predefined level (59.5 Hz in most of United States and 59.3 Hz in 

Texas). Thus, the operation of frequency related control is of great importance and has 

been identified as a high priority area by many power system operators [11]-[14]. 

             The inertial frequency response is influenced by various factors, including the 

total system inertia, the rate of change of power injections, and the system's control 

and protection mechanisms. Analyzing and understanding the inertial frequency 

response is crucial for power system operators and engineers to ensure stable and 

reliable system operation. It helps in designing appropriate control strategies, 

determining system requirements, and assessing the impact of changes in the 

generation mix on frequency stability.  
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Fig. 2.1 Frequency evolution during an event. 

             Traditionally, synchronous machines are used to generate active power, 

regulate the frequency, and provide inertial response. During an event, the inertia 

within rotating mass of a synchronous machine would response instantaneously to 

compensate for fluctuations and disturbances in the short term shown in Figure 2.1. 

After that, the primary frequency response (PFR) would get involved. PFR detects 

changes in frequency and automatically adjusts operations of synchronized generators 

to arrest the frequency decline before reaching the frequency nadir. This usually takes 

place on time scales of tens of seconds.  

              After that secondary frequency regulations take over by varying the active 

power generated by the machines. This takes place on time scales of minutes. The 

tertiary control, when implemented, and generator rescheduling are slower and take 

place on time scales of the order of tens of minutes and hours, respectively. The 

summary of frequency regulation schemes is listed in Table 2.1. 

Contingency 
occurs 

Initial drop in frequency  
(Inertial response) 

PFR and other 
response further 
slows decline 

Other regulation services 
restore frequency 
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Table 2.1 Frequency Regulation Schemes 

No. Control Name Responding Time Objectives 

1 Inertial Response < 1 seconds 

Power balancing, 

transient frequency. 

(automatic) 

2 
Primary Control, 

governor 

3 seconds-10 

minutes 

Power balancing, 

transient frequency. 

(automatic) 

3 
Secondary Control 

(AGC) 

30 seconds-20 

minutes 

Power balancing, 

steady-state frequency. 

(automatic) 

4 
Tertiary Control 

(SCED) 
5 minutes to 1 hour 

Power balancing via 

economic dispatch. 

2.3 Inertia Estimation using Measured Frequency Disturbance 

2.3.1 Frequency Dynamics  

              Power variations in consumption and production affect the frequency 

continuously. Small power disturbance is only visible as noise in the frequency due to 

the mass of the synchronous generators in the power system. For large power 

imbalances, the system frequency excursion from the nominal value would become 

larger. Following a sudden power deficit, for example load step increase or a trip of a 

generator, the kinetic energy stored in synchronized rotors would be discharged to 

compensate the power mismatch, the rotating speed of the generator would be 

decreased and thereby the frequency. The dynamic behavior a single machine can be 

described using the motion equation of a rotating mass as, 

∆𝑃𝑚 − ∆𝑃𝑒 = 𝑀𝑖

𝑑∆𝜔𝑖

𝑑𝑡
+ 𝐷𝑖∆𝜔𝑖, (2.5) 
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where ∆𝑃𝑚 is the mechanical power and ∆𝑃𝑒  is the electrical output power, with 𝑀𝑖 

and 𝐷𝑖denoting the normalized inertia and damping constants.  

              How fast the frequency changes depend on the change in active power and 

the system inertia. In systems with high inertia, the frequency response is slower, 

meaning that the frequency changes gradually over time. This slower response allows 

for more time to implement corrective actions and restore the balance between 

generation and load. On the other hand, in systems with low inertia, such as those with 

a high penetration of renewable energy sources or reduced rotating masses, the 

frequency response is faster, resulting in more rapid frequency deviations. System 

equivalent frequency response model has been widely used for system operations. The 

characteristics of power systems are very complex due to the existence of multiple 

electromechanical oscillation modes, system control noise, and variant distribution of 

inertia throughout the grid. The principal frequency dynamics can be described by the 

evolution of the center of inertia (COI) speed [15]-[16], which is defined as, 

𝜔𝐶𝑂𝐼 =
∑ 𝐻𝑖𝜔𝑖

𝑁
𝑖=1

∑ 𝐻𝑖
𝑁
𝑖=1

, (2.6) 

where 𝑁  is the total number of synchronous generators, 𝐻𝑖  is the 𝑖 th unit’s inertia 

constant, and 𝜔𝑖 is the angular frequency of the rotor of the 𝑖th generator. In this way, a 

system could be considered as a single equivalent center of inertia. And the simplified 

swing equation of the whole grid is considered as the extension of one machine model 

[17],  

∆𝑃𝑚,𝑠𝑦𝑠 − ∆𝑃𝑒,𝑠𝑦𝑠 = 𝑀
𝑑∆𝜔

𝑑𝑡
+ 𝐷∆ω, (2.7) 
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where  ∆𝑃𝑚,𝑠𝑦𝑠  is the system mechanical power change and ∆𝑃𝑒,𝑠𝑦𝑠  is the system 

electrical output power change, with 𝑀  and 𝐷  denoting the system inertia and 

damping constants.  

2.3.2 Inertial Frequency Response Estimation 

              Inertial frequency response refers to the behavior of the power system's 

frequency following a disturbance or sudden change in power generation or load. It is 

directly related to the presence of inertia in the system. When a disturbance occurs, 

such as a sudden loss of generation or a large increase in load, the system experiences 

an imbalance between power supply and demand. The period immediately following 

an in-feed loss, up to one second, is considered as the inertial response of the system, 

before the primary frequency response reserves are activated [18]. During this time, 

the system frequency response is unregulated, and its behavior is dictated primarily by 

the inertia present in the power system. Then the equation relating the maximum post-

contingency RoCoF to the total system inertia can be expressed as, 

𝑑𝑓

𝑑𝑡
 =  

−∆𝑃

2𝐻𝑠𝑦𝑠𝑆𝐵𝑎𝑠𝑒
𝑓0, (2.8) 

where 𝐻𝑠𝑦𝑠 is the system equivalent inertia constant, 𝑆𝐵𝑎𝑠𝑒 is the system rate apparent 

power. 𝑓0 is the system frequency when the disturbance occurs. The relationship of the 

synchronous speed and the system frequency can be calculated as, 

𝜔0 =  2𝜋𝑓0. (2.9) 

              Most inertia estimation approaches rely on event transient measurement of 

collective system model following recorded disturbances. From the swing equation, 



17 

 

given the certain level of disturbance, the system inertia can be estimated based on the 

swing equation (2.8). 

2.3.3 Impact of RES on Frequency Response 

              Renewable energy resources have been recognized as the most promising low 

carbon generations. In recent years, wind and photovoltaic (PV) power plants have 

witnessed a significant growth. Giga Watts (GW) wind and PV generation have been 

installed in many countries. For some countries in Europe, the wind or PV generation 

may even be able to meet most of electricity demand [19]. However, the increasing 

integration of renewable energy sources (RES) has a significant impact on the inertial 

response of power systems. Traditional power systems rely on the inertia provided by 

synchronous generators, which helps stabilize the system's frequency during 

disturbances. However, RES, such as solar and wind power, do not inherently possess 

the same level of inertia as synchronous generators. 

              Renewable energy sources typically exhibit minimal or significantly lower 

rotational inertia compared to synchronous generators. This reduction in system inertia 

can lead to more rapid frequency deviations after disturbances, as there is a decreased 

amount of rotational energy available to mitigate frequency fluctuations. Abrupt 

changes in RES generation or sudden loss of RES output can result in more substantial 

frequency excursions. The lower system inertia associated with RES presents 

challenges in maintaining stable frequency. The limited inertial response from RES 

can lead to frequency deviations that exceed acceptable limits, potentially 
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compromising the reliable operation of the power system. To address this, additional 

measures are often required to ensure frequency control and stability.  

 
Fig. 2.2 Frequency response under different penetration levels of renewable  

generation on the IEEE 24-bus system. 

              Fig. 2.2 shows the simulation results of IEEE 24-bus system with different 

penetration levels of renewable generation in Transient Security Analysis Tools 

(TSAT). System frequency responses are compared regarding to the penetration rates 

at 0%, 10%, 20%, 30% and 40%, respectively. Results indicate that for systems with 

higher RES penetration level, the degradation of system frequency response leads to 

lower frequency nadir and higher initial RoCoF values.  

              Compensating for the reduced inertial response from RES necessitates the 

integration of supplementary ancillary services, such as frequency regulation and fast-

acting reserves, within power systems. These services play a crucial role in managing 

frequency deviations by swiftly adjusting the power output from controllable 

resources or utilizing energy storage systems. As the penetration of RES increases, the 
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provision of these ancillary services becomes increasingly vital to maintain system 

stability and ensure reliable power system operation. 

2.4 Dynamic Inertia Estimation 

              Dynamic inertia estimation refers to the process of continuously and 

adaptively estimating the effective inertia of a power system in real-time or near real-

time. Unlike traditional static inertia estimation methods that rely on fixed values or 

assumptions, dynamic inertia estimation takes into account the dynamic behavior and 

changing conditions of the system. By leveraging measurements and data from the 

power system, such as frequency deviations, and applying mathematical models or 

algorithms, the effective inertia of the system can be estimated dynamically. Dynamic 

inertia estimation is particularly important in modern power systems that incorporate a 

significant amount of renewable energy sources and inverter-based resources. These 

resources have limited or negligible inherent inertia, and their dynamic response to 

system disturbances can significantly impact the overall system inertia.  

              Accurate and real-time estimation of dynamic inertia helps system operators 

and planners in assessing and managing the stability and reliability of the power 

system. It enables them to make informed decisions regarding control actions, grid 

operation, and resource dispatch to maintain system stability and mitigate the potential 

impacts of changing generation profiles. 
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2.4.1 Frequency Measurement 

              Power system frequency measurement involves monitoring and quantifying 

the frequency of the alternating current (AC) in a power system. Frequency is an 

essential parameter in power systems as it reflects the balance between power supply 

and demand. The nominal frequency in most power systems is 50 Hz or 60 Hz, 

depending on the region. For north America the nominal frequency is 60 Hz.  

              Phasor Measurement Unit (PMU) is specialized device that being used in the 

power industry to measure and monitor electrical quantities such as voltage, current, 

and frequency. PMUs provide highly accurate time-synchronized data on the state of 

an electrical power system. Most PMUs can calculate up to 30 to 60 samples per cycle 

with the GPS time stamp provided by hardware that has an accuracy of millisecond or 

higher [20], which can be used to improve the reliability, stability, and efficiency of 

the system.  

              The ability to estimate the inertia of the system using measured frequency 

through PMU during disturbances are affected by multiple factors including: precise 

data on the size of loss; identification of event start time; accuracy of frequency 

measurement; and location of measurement point relative to in-feed loss. Fig. 2.3 

shows the distinct frequency response on different buses within IEEE-24 bus system. 

It also has been proved [21] that a method of curve fitting is required to mitigate the 

impact of measured transients in frequency following a loss, otherwise the calculated 

RoCoF may be significantly larger than the true value. 
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Fig. 2.3 Frequency measurements on different buses. 

              The cost of PMUs depends on the count of measurement channels available. 

Due to the high cost of having a PMU at each node, it is important to select the limited 

measurement taken from a location in the network which is suitable for the estimate of 

RoCoF. 

2.4.2 Inertia Distribution Estimation 

              Power system inertia distribution refers to the presence of diverse elements 

and inertia related characteristics within a power system. It implies that the power 

system is composed of different types of generation sources, transmission lines, 

distribution networks, and loads that exhibit various responses in their inertia related 

behaviors. Power system inertia distribution estimation poses challenges in terms of 

system planning, operation, control, and stability. It involves coordination and 

integration of various generation sources and the implementation of different control 

schemes 
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             Thus, for an equivalent COI model of a large system, the neglection of power 

swing and oscillation dynamics would introduce high approximation errors into the 

dynamic analysis. The research presented in [22] demonstrated that a power system 

can be considered as multiple centers of inertia, coupled through the network. To 

locate the equivalent center of inertia and estimate the system inertia accurately, an 

inertia distribution index (IDI) is introduced, which has been proved to be highly 

linear correlation with system transfer function residue. Availability of measurements 

from PMU makes it possible to evaluate the deviation of bus frequency from COI 

frequency in real time. The electrical distance from the monitored bus to COI location 

can be defined as follows, 

𝑑𝑖𝑠𝑡(𝑓𝑘, 𝑓𝐶𝑂𝐼) = ∫ (𝑓𝑘(𝜏) − 𝑓𝐶𝑂𝐼(𝜏))
2
𝑑𝜏

𝑇+𝑇0+𝑡𝑑

𝑇0+𝑡𝑑

, (2.10) 

where 𝑇0 is the time when a disturbance is detected, 𝑡𝑑 is the dead time considering 

the dead band of frequency, 𝑇  is the time length of the integration period to be 

determined, and n is the total number of buses. Normalized inertia distribution index 

following a disturbance can be calculated as, 

𝐼𝐷𝐼𝑘 =
𝑑𝑖𝑠𝑡(𝑓𝑘, 𝑓𝐶𝑂𝐼)

max
𝑘∈{1,..,𝑛}

𝑑𝑖𝑠𝑡(𝑓𝑘, 𝑓𝐶𝑂𝐼)
. (2.11) 

2.4.3 COI based Inertia Estimation  

              The value of 𝐼𝐷𝐼𝑘  reflects the electrical distance from bus k to the COI 

location, the closest bus to the COI is determined as, 

𝑘𝐶𝑂𝐼 = arg min
𝑘∈{1,..,𝑛}

𝐼𝐷𝐼𝑘. (2.12) 
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              However, the COI location may not always be located at a particular bus; and 

𝐼𝐷𝐼𝑘 may also vary under different disturbance events. Thus, to accurately estimate 

the system inertia, a clustering approach is proposed in this paper to determine the 

multi-bus COI area. Following a disturbance event, the bus 𝑘𝐶𝑂𝐼  is selected as the 

initial mean of points in the COI area cluster, which represents that this bus is the most 

stable bus under the specific event. The electrical distance from an estimated bus to 

bus 𝑘𝐶𝑂𝐼 can then be calculated below, 

𝑑𝑖𝑠𝑡(𝑓𝑘, 𝑓𝑘𝐶𝑂𝐼
) = ∫ (𝑓𝑘(𝜏) − 𝑓𝑘𝐶𝑂𝐼

(𝜏))
2

𝑑𝜏
𝑇+𝑇0+𝑡𝑑

𝑇0+𝑡𝑑

, (2.13) 

where 𝑓𝑘𝐶𝑂𝐼
 is the measured frequency of the bus nearest to COI location. 

              The COI area 𝑆𝐶𝑂𝐼 consists of buses that have electrical distances less than 

the pre-determined threshold value δ, 

𝑆𝐶𝑂𝐼 = {𝑘: 𝑑𝑖𝑠𝑡(𝑓𝑘 , 𝑓𝑘𝐶𝑂𝐼
) ≤ 𝛿}. (2.14) 

              It is known that the location of disturbance is a key factor in the inertia 

estimation. During a normal operation period, disturbance on different buses may 

cause distortion in bus frequency. To mitigate the impact of disturbance location on 

system inertia estimation, a dynamic COI area estimation method is proposed. During 

a specific time period, the system inertia is assumed to be stable under normal 

operation. We set a system observation window, within which events are detected 

while the system remains stable. The set of buses, 𝑆𝐶𝑂𝐼
𝑇 , identified within the COI area 

over a period 𝑇𝑤𝑖𝑛 is defined. The COI bus over period 𝑇𝑤𝑖𝑛 , 𝑘𝐶𝑂𝐼
𝑇 ,, is defined in 

(2.15),    
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𝑆𝐶𝑂𝐼
𝑇𝑤𝑖𝑛 = {𝑘𝑡: 𝑑𝑖𝑠𝑡 (𝑓𝑡

𝑘
, 𝑓𝑡

𝑘𝐶𝑂𝐼
) ≤ 𝛿, 𝑡 ∈ 𝑇𝑤𝑖𝑛}, (2.15) 

𝑘𝐶𝑂𝐼
𝑇𝑤𝑖𝑛 = arg max

𝑘∈{1,..,𝑛}
𝐶𝑘, (2.16) 

where 𝐶𝑘 is the count of bus 𝑘 identified as a bus of the COI area over a period of 

𝑇𝑤𝑖𝑛, 𝑡 indicates the event time within the observation window. Highest 𝐶𝑘 means bus 

k is closest to the COI location and its changes in angle and frequency are minimal 

over period 𝑇𝑤𝑖𝑛 . The impact of bus location on system inertia can be ranked by 

sorting 𝐶𝑘 in descending order. Here, 𝐶𝑝 is defined as the second highest index, which 

indicates that to some extent bus p may represent the dynamics of system. When 

𝐶𝑝/𝐶𝑘 is larger than a threshold, which is set as 0.6, it means the contribution from 

bus p cannot be neglected; if 𝑑𝑖𝑠𝑡(𝑓𝑘 , 𝑓𝑘𝐶𝑂𝐼
)  also satisfies the criteria, the new 

estimated RoCoF 
d𝑓𝑒𝑠𝑡

dt
  then can be re-estimated as follows, 

d𝑓𝑒𝑠𝑡

dt
=

𝐶𝑘

𝐶𝑝 + 𝐶𝑘
∙
d𝑓𝑘
dt

+
𝐶𝑝

𝐶𝑝 + 𝐶𝑘
∙
d𝑓𝑝

dt
, (2.17) 

where (
d𝑓𝑘

dt
  is the measured RoCoF on bus k, and 

d𝑓𝑝

dt
  is the measured RoCoF on bus 

𝑝. If there is no feasible bus 𝑝, 𝐶𝑝 is set to 0.   

              The system inertia can be then estimated following the procedures shown in 

Fig. 2.4. The proposed dynamic inertia estimation method can effectively detect 

events and estimate the inertia accurately using the data extracted from WAMS 

system. If the size of loss is accurately known, then the total system inertia 𝐸𝑒𝑠𝑡 can be 

estimated, 
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𝐸𝑒𝑠𝑡 =
𝑓0∆𝑃

2
d𝑓𝑒𝑠𝑡

dt

. (2.18) 

              In a large system, inertia of a regional area can be estimated following a 

disturbance where the loss occurs outside the area [23], then "∆" P can be extended to 

cover the total power crossing the area boundary,  

∆𝑃 = ∑∆𝑃𝑖

𝑖∈𝐵

, (2.19) 

where ∆𝑃𝑖 is the change in boundary exchange power in MW, B is the set of boundary 

transmission lines. 
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Fig. 2.4 System inertia estimation process on events. 

2.4.4 Results Analysis 

              The dynamic system inertia estimation approach is evaluated on the IEEE 24-

bus test system. The system has 24 buses (17 buses with loads), 38 branches, 33 

generators. The total system load is 1,684 MW. The simulation model was 

implemented using TSAT, which is a core module of DSATools [24].        
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              For an event where the disturbance appears as two distinct loss events, a non-

monotonic frequency deviation may occur leading to erroneous IDI values. Integration 

period less than 0.5s can avoid the frequency distortion and make sure event detector 

captures more events. To determine the optimal integration period and ensure the IDI 

of the bus closest to COI location reaches the lowest value, sensitivity of integration 

period 𝑇 is tested on the base model. Fig. 2.5 shows the results of the sensitivity test of 

integration period. It can be observed that the IDI on bus 18, 21, 22 and 23 reach the 

lowest value at the integration period of 0.2 s. Thus, the integration period is set to 0.2 

s.         

  

Fig. 2.5 Sensitivity of integration period. 
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Fig. 2.6 Load variation profile. 

              The system total load profile is simulated for 60 minutes, as shown in Fig. 2.6 

100 perturbations occur evenly on each bus with same probability, and a moving 10-

minute observation window is applied. In the first 10-minute window, 16 events are 

detected. Fig. 2.7 shows the result of the identified COI area buses in the 24-bus 

system using the proposed method, larger yellow circle means higher 𝐶𝑘 value of bus 

𝑘. It is observed from Fig. 2.8 that bus 13 is identified as the COI bus of period 𝑇𝑤𝑖𝑛. 

While bus 23 also shows its close electrical distance to the COI location based on the 

proposed method. The results also show that frequency on bus 2, bus 7 and bus 22 

contains harmonic waves. Inertia distribution indexes on these buses are estimated 

between 0.9 and 1, which indicates that these buses are relatively unstable and RoCoF 

measurements on these buses could suffer high bias.   
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Fig. 2.7 Center of inertia area estimation. 

              Method of curve fitting is used to mitigate the impacts of measured transients 

in frequency following a loss which leads to significant large RoCoF value. Fig. 2.8 

shows the measured RoCoF on the determined COI bus, the measured RoCoF is 

corrected from -0.074 Hz/s to -0.046 Hz/s. The results of system inertia estimation, 

under a selected event, obtained with the proposed method are displayed in Table 2.2. 
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For a single detected event, the system inertia 𝐻𝐶𝑂𝐼 is estimated as 30,044.6 MWs2 

using the traditional method, while the real system inertia is 31,525 MWs2 ; The 

corresponding percentage estimation error %𝐻𝑑𝑖𝑓
𝐶𝑂𝐼  is -4.70%. The system inertia 

estimated with the proposed dynamic inertia estimation method, 𝐻𝑝𝑟𝑜𝑝, is 30,600.9 

MWs2  that corresponds to an estimation error %𝐻𝑑𝑖𝑓
𝑝𝑟𝑜𝑝

 of -2.93%,  which shows 

substantial improvement over the results for traditional single event estimation 

method: the inertia estimation error dropped by 37.6% from 1,480.4 MWs2 to 924.1 

MWs2.This corresponds to an overall estimation improvement of 1.77%. 

 

Fig. 2.8 RoCoF measurement in Center of inertia area. 

Table 2.2 Results of Inertia Estimation with Various Methods 

∆𝑃 (MW) 
𝐻𝑟𝑒𝑎𝑙 

(MWs) 

𝐻𝐶𝑂𝐼 

(MWs) 
%𝐻𝑑𝑖𝑓

𝐶𝑂𝐼 
𝐻𝑝𝑟𝑜𝑝 

(MWs) 
%𝐻𝑑𝑖𝑓

𝑝𝑟𝑜𝑝
 

52.56 31,525.0 30,044.6 -4.70% 30,600.9 -2.93% 
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              To evaluate the impact of renewable penetration on inertia distribution, another 

emulation was conducted under scenario of 20% wind penetration level: generators on 

bus 2, bus 7 and bus 13 are replaced with wind generators. Fig. 2.9 shows the results 

under scenario of 20% wind penetration level. A significant excursion of COI location 

can be observed due to installation of wind plants. It shows that the COI location shifts 

towards the area where many synchronous generators are located and synchronized 

online. 

 

Fig. 2.9 Center of inertia area estimation with 20% wind generation penetration. 
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2.5 Summary 

              As the integration of variable renewable generation increases, the reduction in 

the system inertia poses a serious challenge for frequency regulation. Evaluation of the 

system inertia distribution traditionally based on a single disturbance event may be 

susceptible to power swings and oscillation between machines, which could 

deteriorate the accuracy of measurements and lead to high biased estimation.  

              This chapter proposes a proposed a PMU measurements-driven method which 

estimates the dynamic system inertia distribution and determines the center of inertia 

(COI) area. The frequency response under different renewable generation penetration 

levels is first tested. Then, an index based on electrical distance is used to estimate the 

inertia distribution over the entire grid. Butterworth filter is introduced to mitigate the 

impact of noise-induced measurement errors. To reduce the bias from location of 

measurements relative to the location of in-feed loss, disturbances on different buses 

over an observation window are combined; then a clustering algorithm based on 

electrical distance is utilized to accurately estimate the location of COI suitable for 

measurements. Areas with different inertia distribution levels are proposed to provide 

useful information to generation dispatch and frequency control. 

              The simulation results on the IEEE 24-bus system indicate that the power 

system with lower RES penetration shows a better frequency response, where the 

nadir is relatively higher and the RoCoF is less steep. The sensitivity test is then 

conducted to determine the optimal time length of integration period. The results also 

show that the proposed dynamic inertia estimation method utilizing the proposed 
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clustering algorithm has a better performance on system inertia estimation by 

incorporating the impact of perturbation location and oscillation between machines. 

Buses within COI area show relative stability comparing to the neighbor areas, 

measurements on these buses are relative robust and authentic. Unstable buses, which 

suffer harmonic waves, are also determined during the estimation process. Finally, the 

impact of geographic location of RES on COI area is examined. Overall, the proposed 

method is more robust and accurate for estimating system inertia distribution. 

Potential applications using the concept of inertia distribution estimation would be 

explored in the future. 
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3. MACHINE LEARNING ASSISTED INERTIA ESTIMATION 

              Inertia plays a crucial role in maintaining system stability. It provides a buffer 

against sudden changes in power supply or demand. Inertia estimation can ensure the 

accountability and reliability of inertia response through implementation of frequency 

control ancillary services [25]-[26]. Accurate estimation of power system inertia also 

helps system operators and planners assess the system's stability margins and ensure 

that sufficient inertia is available to maintain stable frequency and voltage levels. 

Power system inertia estimation is crucial for grid planning and operation. It provides 

insights into the system's dynamic behavior and helps in identifying areas where 

additional inertia resources may be required. This information aids in determining 

optimal generator placement, scheduling of generation resources, and the design of 

frequency control strategies to ensure reliable and efficient operation of the power 

system. Accurate estimation of system inertia helps in understanding the impact of 

RES on the overall system dynamics and enables the development of strategies to 

maintain grid stability and reliable operation. Protective relays and devices rely on 

accurate knowledge of the system's inertia to trigger appropriate actions during faults 

or abnormal conditions. Proper coordination of protective devices based on accurate 

inertia estimation helps in minimizing the impact of faults and ensures the safety and 

reliability of the power system. 

              In large-scale deregulated interconnection power systems, inertia information 

is only available within operators’ own territories. Thus, system-wide inertia 

estimation is important for operators to provide frequency regulation services.  
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Traditionally, system frequency response is analyzed by looking at the collective 

performance of all generators using a system equivalent model. Based on event 

measurements and mathematical model, the system inertia could be estimated by the 

number and size of actively connected synchronous units. 

              Inertia estimation method based on mathematical model is highly dependent on 

accuracy of measurements from phasor measurement units (PMUs) or equivalent 

devices. However, modern power systems are connected to different devices which 

provide frequency regulation service, and inertia constant estimation purely based on 

synchronous generators is inaccurate [27]. Moreover, RES and other inverter-based 

sources are traditionally considered passive in terms of inertial response. The 

variability nature of RES also imports uncertainties into the system inertial response as 

well as system inertia constant [28]. Recent study in [29] shows that control schemes 

emulating synchronous machine response can be used to contribute system inertia. 

Therefore, the swing equation-based models may not be able to capture the entire 

characteristics. In addition, nonlinearities in system frequency response such as 

deadbands and saturations cannot be taken into considerations either. Thus, the 

estimated value based on mathematical model may suffer inaccuracy in various 

conditions. 

              The invention and development of PMU based wide area measurements 

systems (WAMS) enable the application of data-driven techniques in power system 

analysis [30]. The advantage of data-driven inertia estimation is its ability to capture 

the dynamic and time-varying nature of the power system. It can account for changes 
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in generation mix, renewable energy integration, and load variations, which have a 

direct impact on the effective inertia. A neural network-based inertia estimation 

technique is proposed in [31], which utilizes inter-area model information as neural 

network inputs and estimates the inertia constant as an output of the network. 

However, this approach only estimates the inertia constant for large systems with only 

traditional synchronous generation. A convolutional neural network (CNN) based 

model is proposed in [32], which estimates the system inertia through frequency 

response and RoCoF data. Graphs are a kind of data structure which models a set of 

objects (nodes) and their relationships (edges) [33]. Recent advances in deep neural 

network (DNN) offer an opportunity to integrate graph topology into a neural 

network, creating a graph neural network (GNN) model [34]. Power system can be 

represented as a graph with high dimensional features and interdependency among 

buses. This perspective may offer a better state of the art machine learning for power 

systems analysis. 

3.1 System Perturbation using Probing Signal 

              The power system with frequency control loops is shown in Fig. 3.1. For 

primary frequency control, once the power mismatch event has occurred and 

frequency has started to drop from nominal value, the deviation is fed into closed 

control droop where turbine-governor counteracts the power mismatch [35]. Focusing 

on the short period following the disturbance, the model is simplified further when 

analyzing frequency dynamics before any secondary control gets involved. 
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Fig. 3.1 Generator transfer function model. 

              Synchronized measurement technology makes it possible to sample analogue 

voltage and current wave data in synchronism with a global positioning system (GPS) 

clock, it can also record the corresponding frequency related data from widely 

distributed locations. 

              With PMUs widely used in modern power systems. Fig. 3.2 shows the 

topology of wide area monitoring system (WAMS). Measurements from PMUs are 

obtained from widely distributed locations, and synchronized with respect to a GPS 

clock [36]. Synchrophasor technologies allow direct measurement of frequency and 

bus voltages. With the development of PMU based WAMS, the accuracy of 

measurements improves significantly. 

              Most PMUs can calculate up to 30 to 60 samples per cycle with the GPS time 

stamp provided by hardware that has an accuracy of millisecond or higher [37], 

reporting rates of 10 - 240 samples per second are allowed. In this paper, the sampling 

rate of PMU is set to 200 per second. 
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Fig. 3.2 Wide area measurement system. 

              Low level probing signal method has been conventionally used for generator 

dynamic studies. A modified form of detrended fluctuation analysis has been 

introduced to determine the event suitability for probing signal method [32]. With 

PMUs installed throughout the system providing highly accurate measurements and 

test improvement such as microperturbation method (MPM), the probing signal 

method can provide effective approach for system inertia identification without 

affecting system stability [38].  
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Fig. 3.3 A sample of probing signal, ambient measurements for 𝑃𝐸=0.001 p.u. 

              A sample probing signal, fed to the system with an amplitude of 𝑃𝐸 , and 

corresponding PMU measurements are shown in Fig. 3.3. With varying system inertia 

and probing signal amplitude, a number of ambient measurements of Δ𝜔, ∆�̇� and v 

can then be collected. 

3.2 Neural Network based Inertia Estimation 

3.2.1 Inertia Estimation using LRCN 

              Motivation of CNNs roots in the history of neural networks for graph data 

processing, recurrent neural networks (RNN) are utilized on graphs and cycles. Study 
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in [39] has shown that CNNs have the ability to extract spatial features and compose 

them to construct expressive representations. An example of a convolutional neural 

network is shown in Fig. 3.4 [40]. 

  

 

Fig. 3.4 Illustration of convolutional neural network architecture [40]. 

          Long short-term memory (LSTM) is an extended frame of RNN which can 

exhibit temporal behavior of time-series input data. An LSTM cell typically 

compromises three gates: input, forget and output gates [41]. 

 

Fig. 3.5 Illustration of an LSTM cell. 

          The fundamental equations of LSTM network can be rep-resented as follows, 
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ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ𝑡, (3.1) 

𝑧𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓), (3.2) 

where, 𝑥𝑡  is the network input; ℎ𝑡  is the output state of the neuron from LSTM 

network; ℎ𝑡−1  is the previous state of the neuron; 𝑧𝑡   computes the necessary 

information and removes the irrelevant data; 𝜎  is the sigmoid function; 𝑊𝑓  is the 

weight and 𝑏𝑓  is the bias. 
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Fig. 3.6 General architecture of proposed LRCN model. 
 

              Since LRCN leverages the strength of rapid progress in CNN and has the 

ability to capture the dependencies in a sequence, it has been successfully used in 

computer vision, image processing, and other fields in signals and time-series analysis 
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[42]. The architecture of the proposed LRCN model is illustrated in Fig. 3.6 and can 

be trained to estimate system inertia from ambient measurements obtained from the 

PMU. 

              The proposed LRCN model first processes the measurements input with 1-D-

CNN layers, whose outputs are then fed into the LSTM recurrent sequence model; and 

the fully connected layer finally produces the estimated inertia constant. The samples 

in training set are defined in batches which will be propagated through the networks. 

One epoch of training is completed when all the training samples have been passed 

forward and backward once. The number of iterations is defined as the number of 

passes, and each pass uses the same batch size that is the number of samples. At each 

training iteration, the LRCN model input size is 𝑏 ×  𝑐 , and the output will be a 

column vector of size 𝑏 with inertia estimates for corresponding input in the time 

period. While the dimension of 𝑐  is determined by the set of features and feature 

sampling rate.   

              The mean squared error (MSE) measures the average squared difference 

between actual and predicted outputs. The goal of training is to minimize MSE via 

back propagation which will provides best estimator [43]. The fully connected 

network used in this model includes one flatten layer and two hidden layers. MSE is 

defined as, 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − �̃�𝑖)

2

𝑛

𝑖=1

, (3.3) 
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where 𝑛 is the total number of training samples, 𝑦𝑖 is the actual value of 𝑖𝑡ℎ output, 

and �̃�𝑖  is the estimated value corresponding to the 𝑖𝑡ℎ  output. Similarly, the weight 

update equation via back propagation is expressed as, 

𝑤𝑡+1 = 𝑤𝑡 − 𝛼
𝜕𝐸𝑀𝑆𝐸

𝜕𝑤𝑡
, (3.4) 

where 𝑤𝑡  is the weight for current iteration, 𝑤𝑡+1  is the updated weight for next 

iteration, 𝛼 is the learning rate, and 𝐸𝑀𝑆𝐸  is the MSE obtained from expression (3.4). 

3.2.2 GCN based Inertia Estimation 

              Geometric deep learning is a recent emerging field. Traditional CNNs have 

limitations in processing graphical data which have explicit topological graph 

correlation embedded [44]. Recent advancement of CNN results in the rediscovery of 

GNNs. GCN has been developed by extending the convolution operation onto graphs 

and in general onto non-Euclidean spaces. Previous studies in [45]-[46] have proved 

that GCN provides state-of-arts performance in graph analysis tasks.        

              Power system is an interconnected network of generators and loads. The 

graph structure of the power system consists of nodes (buses) and edges (branches). 

The branches in the power system are undirected, such graphs provide information on 

buses and their connections. The convolution operator in propagation module is used 

to aggregate information from neighbours. Considering 𝒢 = (𝒱, ℰ) as an undirected 

graph representing a power system, where 𝒱 ∈ ℝ𝑁  denotes its nodes and ℰ ∈ ℝ𝐾 

denotes its edges.  Let 𝐴 ∈ ℝ𝑁×𝑁  be the adjacency matrix of 𝒢 , we can define a 

renormalization trick as, 
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𝑉 = �̃�−
1
2�̃��̃�−

1
2, (3.5) 

where �̃� = 𝐴 + 𝐼𝑁  represents an adjacency matrix with self-connections. Typically, 

the element at (i, j) of the adjacency matric 𝐴 is defined as follows, 

𝐴𝑖𝑗 = {
1;  if 𝒱𝑖, 𝒱𝑗 ∈ 𝒱, (𝒱𝑖, 𝒱𝑗) ∈ ℰ

0;  if 𝒱𝑖, 𝒱𝑗 ∈ 𝒱, (𝒱𝑖, 𝒱𝑗) ∉ ℰ
, (3.6) 

where (𝒱𝑖, 𝒱𝑗) denotes the branches from 𝑖 to 𝑗. The diagonal degree matrix �̃� for 𝒢 is 

defined as �̃�𝑖𝑖 = ∑ �̃�𝑖𝑗𝑗 . 

              The graph convolutional layer is defined as follows, 

𝐹𝑙(𝑋, 𝐴) = 𝜎(𝑉𝐹(𝑙−1)(𝑋, 𝐴)𝑊𝑘
𝑙 + 𝑏𝑙), (3.7) 

where 𝐹𝑙  is the convolutional activations and 𝑏𝑙  is the bias matrix at the 𝑙-th layer; 

𝐹0 = 𝑋 is the input matrix. Fig. 3.7 demonstrates the message passing mechanism in 

forward propagation, a target node (bus 8) receiving information from its neighboring 

nodes.  
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Fig. 3.7 Example of message passing mechanism. 

3.2.3 Optimal PMU Allocation 

              Due to the high cost of having a PMU at each node, various techniques are 

used to solve the optimal PMU placement (OPP) problem for observability of the 

system for static and dynamic state estimators [47]-[48]. Traditionally OPP is a binary 

optimization problem, the objective functions considered in OPP problems in previous 

studies are mainly for minimization of the number of PMUs (3.8), maximization of 

observability (3.9), or both as a multi-objective function,  

𝑀𝑖𝑛 𝐹1 = ∑𝑥𝑖

𝑁

𝑖=1

, (3.8) 

𝑀𝑎𝑥 𝐹2 = ∑𝑜𝑖

𝑁

𝑖=1

, (3.9) 
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where 𝑥𝑖 , 𝑖 = 1,2, … ,𝑁 is elements of the PMU installation indication row vector 𝑋. 

For the base case, 𝑜𝑖 denotes the observability of each bus. The complete topological 

observability can be expressed as follows, 

              The complete topological observability can be expressed as follows, 

𝑂 = 𝐴 ∙ 𝑋, (3.10) 

𝑂 ≥ 𝑢, (3.11) 

where 𝑢 is a row vector 𝑁 × 1 consisting of binary variables, representing that the 

monitored bus is observed by PMU. 

3.3 Simulation Setup 

              The IEEE 24-bus system [49] was used for the experiment to collect the 

training data. The system has 24 buses (17 buses with loads), 38 branches, and 38 

generators. The system inertia M typically ranges from 3s to 8s. Hence, to ensure the 

practicality of the proposed model, the measurements snapshots were collected for 11 

different values of M from 3s to 8s with an increment of 0.5s following daily 

dispatches considering the RES penetration. Similarly, probing signals with 100 

different values of 𝑃𝐸 from 0.001 p.u. to 0.01 p.u. with an increment 0.0001 p.u. were 

used. 

              The modeling and simulation of the power system, along with data collection, 

were conducted in MATLAB/Simulink 2019b. The data pre-processing was conducted 

in both MATLAB and Python. The proposed LRCN and GCN based models were 

developed in Python using Keras and PYG. The initial data analyzed in this study 
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were acquired from PMUs with a sampling rate larger than 200 Hz; nodal 

measurements of Δ𝜔 and ∆�̇� are obtained. By using only one second sampling frame 

for normalization, the real-time applicability of this method is maintained. Similarly, 

following the same pattern we obtained nodal voltage measurement v.  Since the 

training data come from the ambient measurements of all PMUs may suffer different 

sampling rate which is larger than 200 Hz, without dimension reduction process the 

original training data would increase the complexity of the model and may also lead to 

overfitting. In addition, there are bad data in the raw measurements which would 

introduce high error in analysis results. Therefore, the bad data points are first 

discarded from raw measurements, and then we downsample the measurements to 200 

Hz for next step. Additionally, Gaussian noise signal is added to the constituent tonic 

to mimic the noisy measurements. Different signal-to-noise ratios (SNR) are 

investigated in this paper. The data are collected between multiple sessions, all the 

measurements are normalized by employing min/max normalization between [0, 1]. 

              To find the best time frame of data extraction, different time windows of the 

ambient measurements are determined: (1) the time frame is first chosen from 0s to 1s 

following the perturbation, where initial RoCoF is included; (2) the second time frame 

is from 0.5s to 1.5s after the signal infeed. With Δ𝜔  and ∆�̇�  as basic features 

combination, the coefficient of determination and validation accuracy are used as 

evaluating metrics.  

              Wrapper feature selection method is utilized to determine the optimal 

combination of features for inertia estimation model training: (i) the proposed LRCN 
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model is used as the inertia estimator, (ii) accuracy score is used as the evaluation 

metric, (iii) greedy forward selection as the subset selection policy. The specific 

metrics for feature evaluations is expressed as follows, 

𝐴𝐶𝐶 =
 |{𝑦 ∈ 𝑇𝐷| |𝑦 − �̃�| ≤ 𝜇}|

| 𝑇𝐷|
, (3.12) 

where 𝐴𝐶𝐶 denotes the proportion of the correctly predicted values with 𝜇 tolerance. 

𝑇𝐷 denotes the validation dataset, and 𝜇 is the predetermined threshold. 

              Constraints of PMU locations are not considered in the base case. With a 

resampling rate of 200Hz, measurements on each PMU node gives 200 data points at a 

sampling frame of 1s. In this paper, ambient measurements of Δ𝜔 , ∆�̇�  and 𝑣  on 

generator buses are assumed as available measurements. 

              Availability of PMU data are affected by several realistic factors, which have 

been studied in [18]. Given limited resources, the objective function (16) of OPP is 

applied in this work to maximize the system observations. Zero injection bus effect is 

also added. Traditionally, zero injection bus (ZIB) means no load or generator is 

connected to it. Since we are more interested in the statement of generators, the impact 

of zero generation injection bus (ZGIB) is considered in this work where generator is 

the only factor. The topological observability constraint of each of the bus connected 

to a ZGIB is updated by introducing virtual connections to every other non-ZGIB bus 

connected to that same ZGIB, 

�̃�𝑖 = ∑𝐴𝑖𝑗𝑥𝑗

𝑁

𝑗

+ ∑𝑤𝑖𝑗𝑥𝑗

𝑁

𝑗

∀𝑖 = 1,2, … ,𝑁, (3.13) 



49 

 

where 𝑤𝑖𝑗 is an auxiliary binary variable: 1, if buses i and j are both connected to the 

same ZGIB; otherwise set zero. The GCN model consists of one GNN layer and two 

hidden fully connected layer. The dimension of input features is defined based on the 

number of available PMUs which gives 𝑛 × 𝑑, where 𝑑 is the nodal features of GCN 

layer. The fully connected layers are set as 64 and 128 respectively. 

3.4 Results Analysis 

              To investigate the best time period for feature extraction, all PMUs are 

considered available in base case. Measurement ∆�̇�  is selected as training feature 

combination; training data extracted from two periods are then fed into the 

aforementioned models, including the proposed LRCN and GCN models.  

              Performances of different inertia estimation models are summarized in Table 

3.1. As it can be observed, the DNN model has the lowest validation accuracy for both 

scenarios. CNN based model has a relatively higher validation accuracy, showing 

advantage in processing spatial data. The proposed LRCN model has a validation 

accuracy of 96.89% with a tolerance of 0.5s for features extracted from period 0.0 - 

1.0s period, while it is only 82.57% for the use of features extracted from period 0.5 - 

1.5s. GCN based model has the highest validation accuracy in both scenarios at 

98.15% and 83.19% respectively. On the whole, the features extracted from the time 

frame following the disturbance contain prominent inertial response information, and 

accordingly have a positive impact on the overall performance of inertia constant 

estimation model.     
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Table 3.1 Performance Comparison for Different Models 

Models 

Period (0.0-1.0s) Period (0.5-1.5s) 

Validation 

Accuracy 

MSE 

Validation 

Accuracy 

MSE 

DNN 93.27% 0.065 78.18 % 0.314 

CNN 94.46% 0.052 80.36% 0.236 

LRCN 96.89% 0.028 82.57% 0.215 

GCN 97.48% 0.022 83.19% 0.203 

              Fig. 3.8 compares the distribution of absolute prediction error for the LRCN 

model with features extracted from 0.5s - 1.5s and 0.0s - 1.0s respectively. Using 

features extracted from period 0.0 - 1.0s, the coefficient of determination of the 

proposed LRCN model is 0.9625, which is higher the use of features extracted from 

period 0.5 - 1.5s at 0.7619. 

 
(a) Features extracted from 0.5s - 1.5s.  
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(b) Features extracted from 0.0s - 1.0s. 

Fig. 3.8 Absolute error of prediction with LRCN model using features extracted from  

different time periods. 

Table 3.2 Comparison of Different Features Sets for LRCN Model 

Features Set Δ𝜔 ∆�̇� Δ𝜔 + ∆�̇� 
Δ𝜔 + ∆�̇� + 

v 

Validation Accuracy 80.30% 96.89% 97.34% 95.76% 

MSE 0.296 0.032 0.025 0.030 

Coefficient of 

Determination 
0.8945 0.9585 0.9725 0.9564 

              Optimal combination of features extracted from 0.5s - 1.5s period is first 

selected through greedy forward selection. Table 3.2 compares the results with LRCN 

model as performance estimator.  It can be observed that only considering Δ𝜔 

measurement as input feature provides a validation accuracy of 80.30%. Combination 

of Δ𝜔 and ∆�̇� has a highest validation accuracy at 97.34% with 0.5s tolerance, which 
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outperforms other feature combinations. Thus, Δ𝜔 + ∆�̇� is selected as the optimal 

combination for model training. 

              Fig. 3.9 and Fig. 3.10 depict the evolution of MSE losses on the training and 

validation datasets over the training process of the proposed models. As it can be seen, 

for both LRCN and GCN cases, MSE decreases as the number of epochs increases. In 

terms of MSE, the validation loss of LRCN model drops faster and reaches minimal 

value at 0.025. It should be noted that a sudden drop is observed in GCN model 

training, and the GCN based model has a lower validation loss at 0.020.  

 

Fig. 3.9 The learning curve of the proposed LRCN model: MSE losses versus the  

number of epochs.  
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Fig. 3.10 The learning curve of the proposed GCN model: MSE losses versus the  

number of epochs.  

              The proposed LRCN and GCN based approaches are then compared with 

benchmark algorithm [31] in Table 3.3, Δ𝜔 and ∆�̇� are used as primary features to 

train the model. Both algorithms are employed to train the inertia constant estimation 

model. The results show that the CNN model has a validation accuracy of 95.18% 

with 0.5s tolerance, which is higher than the validation accuracy of DNN model at 

93.45%. These results reflect that CNN based model has the better capability to 

process spatial data comparing to traditional DNN model. Nevertheless, the proposed 

LRCN model has a validation accuracy of 97.34% with 0.5s tolerance, and GCN 

model has a validation accuracy at 98.15%. Additionally, the coefficient of 

determinations of LRCN model and GCN model are 0.9725 and 0.9826 respectively, 

which are higher than the benchmark CNN and DNN models. An explanation could be 

that the proposed LRCN and GCN models are more efficient algorithms to identify 
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critical temporal information and graphical information embedded in the collected 

power system data. Combining Table III and Figs. 9-10, we can observe that GCN has 

the highest validation accuracy and the lower MSE, indicating that GCN has a better 

performance in processing graphical data. 

              In addition to the ideal condition, the proposed models are compared with the 

benchmark models under high noise conditions. Study in [50] has shown that a SNR 

of 45dB is considered as a good approximation of noise power under realistic 

conditions.  

Table 3.3 Comparison of Models with Optimal Feature Combination 

Model 
Validation 

Accuracy 

Coefficient of 

Determination 
MSE 

DNN 93.45% 0.9224 0.058 

CNN 95.18% 0.9369 0.045 

LRCN 97.34% 0.9725 0.025 

GCN 98.15% 0.9826 0.020 

              Table 3.4 shows the inertia estimation accuracy of all models with 

combination of Δ𝜔  and ∆�̇�  as training features. After adding additional Gaussian 

noise signal with a SNR of 45dB to the ambient measurements, the overall MSE 

increases for both models, while the validation accuracy reduces accordingly. 

Understandably, a significant reduction in validation accuracy can be observed in both 

cases.   



55 

 

Table 3.4 Comparison of Different models with SNR at 45dB 

Model w/o SNR w/ SNR at 45dB 

DNN 93.45% 90.84% 

CNN 95.18% 92.13% 

LRCN 97.34% 93.25% 

GCN 98.15% 93.87% 

 

 

Fig. 3.11 Prediction results of the benchmark CNN model with SNR at 45dB. 
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Fig. 3.12 Prediction results of the proposed LRCN model with SNR at 45dB. 

 

Fig. 3.13 Prediction results of the proposed GCN model with SNR at 45dB. 

              The scatter points of CNN model, the proposed LRCN and GCN models 

when SNR of 45dB is applied are depicted in Figs. 3.11-3.13. Results show that only 
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considering measurements of frequency related data may suffer high error when noise 

is applied.  

              The method described in this research uses a wrapper feature selection 

process and then. Results of different feature combinations are listed in Tables 3.5 and 

3.6. It can be observed that the proposed LRCN model has a validation accuracy of 

93.25% with 0.5s tolerance under the condition of SNR at 45dB. With voltage 

measurements added, the validation accuracy is improved to 93.87% with 0.5s 

tolerance. 

Table 3.1 Comparison of LRCN Model (SNR 45 dB) 

Features Set Δ𝜔 + ∆�̇� Δ𝜔 + ∆�̇� + v 

Validation Accuracy 93.25% 93.76% 

MSE 0.119 0.098 

Coefficient of Determination 0.9032 0.9156 

Table 3.2 Comparison of GCN Model (SNR at 45 dB) 

Features Set Δ𝜔 + ∆�̇� Δ𝜔 + ∆�̇� + v 

Validation Accuracy 93.87% 94.56% 

MSE 0.088 0.071 

Coefficient of Determination 0.9227 0.9449 
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              In summary, (i) under a low noise condition, measurements of Δ𝜔 and ∆�̇� are 

the optimal set of features suitable for inertia estimation; (ii) with SNR of 45dB added, 

the performance of benchmark model decreases significantly, while the proposed 

models based on optimal features combination of Δ𝜔 , ∆�̇�  and v shows higher 

robustness and better performance. 

          The application of proposed ZGIB based OPP approach to IEEE 24-bus system 

is carried, and the corresponding impact on inertia estimation models are investigated 

in this section.  

          Table 3.7 listed the results of PMU location considering the proposed ZGIB-

OPP method. Given the total number of PMUs limited by two, the proposed OPP 

method considering ZGIB suggests locating PMUs at buses 2 and 16 for the best 

inertia estimation performance. When the total number of PMUs increases, the 

proposed ZGIB OPP adds more buses into the optimal set, indicating the consistency 

in optimal PMUs locations. 

Table 3.3 Optimal Locations of PMUs given Limited Resources 

No. of PMUs 2 3 4 5 

Bus #  2, 16 2, 16, 21 2, 16, 21, 23 

2, 13, 16, 21, 

23 
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Fig. 3.14 Distribution of absolute values for random PMU locations. 

 

Fig. 3.15 Distribution of absolute values for ZGIB-OPP. 

               We apply the proposed ZGIB-OPP to IEEE 24-bus system, and the system 

wide measurements of limited channels are then obtained for model training. Fig. 3.14 
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and Fig. 3.15 compare the distribution of prediction absolute error for different PMUs 

settings using LRCN model. Comparing to the random PMU location case, the 

proposed ZGIB-OPP improves the performance of LRCN model, resulting in more 

samples with absolute error landed within 0.1-0.2s.  

Table 3.4 Comparison of Different Models with Five PMUs Limit 

PMUs Locations ZGIB-OPP 

Random PMUs 

Location 

Full PMUs 

DNN 91.36% 90.00% 93.45% 

CNN 92.73% 90.45% 95.18% 

LRCN 95.26 92.36% 97.34% 

GCN 95.89% 94.65% 98.15% 

              Results listed in Table 3.8 also show that with limited PMU channels, as well 

as combination of Δ𝜔 and ∆�̇� as input feature, the validation accuracy of all models 

drops accordingly. For DNN and CNN model, the validation accuracy drops to 

90.00% and 90.45% respectively. Validation accuracy of LRCN and GCN model 

drops slightly when there are limited channels or under random PMU locations. With 

ZGIB-OPP applied, GCN based model has the highest accuracy of 95.89%. It should 

be noted that applying ZGIB-OPP improves the performances of all models, indicating 

that the overall observability of the WAMS is improved through the proposed ZGIB-

OPP algorithm. 
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3.5 Summary 

              Data-driven inertia estimation refers to the use of historical power system 

data to estimate the effective inertia of a power system. Instead of relying on static 

values or assumptions, data-driven methods leverage the availability of system 

measurements. Machine learning techniques, such as neural networks, support vector 

machines, or regression models, are commonly applied to develop data driven models 

that can capture the relationship between the available data and the inertia of the 

system. 

              Deep neural networks have been applied for inertia estimation as extensive 

amounts of data can be obtained through power system digital equipment and 

advanced measuring infrastructures such as PMUs. In this chapter, LRCN and GCN 

based learning algorithms are proposed to estimate system inertia constant. System 

wide ambient measurements based on WAMS are used as candidate features for 

model training, and a wrapper feature selection is also used to optimize the feature 

combination. Considering the limitation on PMU settings, an ZGIB-OPP method is 

proposed to maximize the observability of the WAMS given limited PMU resources. 

Results indicate that the proposed LRCN and GCN models have better performances 

than the benchmark DNN and CNN models. The proposed LRCN model and GCN 

model also show high robustness under conditions with higher noises. The proposed 

ZGIB-OPP method has been proved to be capable of improving the performance of all 

implemented models. Considering that the IEEE 24-bus system model used in this 

research has a mix generation of both synchronous generators and inverter-based 



62 

 

resources, the proposed approach can also be applied to estimate inertia constant in 

realistic conditions. 

 

  



63 

 

4. PHISICS-BASED LOCATIONAL ROCOF-CONSTRAINED 

UNIT COMMITMENT 

4.1 Literature Review 

              Power system frequency stability refers to the ability of the system to 

maintain its frequency within an acceptable range under normal operating conditions. 

The nominal frequency, such as 50 Hz or 60 Hz, is maintained by balancing the power 

generation and consumption in the grid. Frequency stability is crucial because 

deviations from the nominal frequency can affect the performance of electrical 

equipment and disrupt the synchronization of interconnected systems. RoCoF is a 

measure of the rate at which the frequency is changing over time. It indicates the 

speed at which the system frequency is deviating from its nominal value. RoCoF is 

important because it provides information about the dynamic behavior of the power 

system and helps in assessing the system's response to disturbances. When there is a 

sudden change in power generation or demand, the RoCoF may deviate from its 

normal value. A stable RoCoF ensures that the frequency deviation does not escalate 

rapidly, and that the system can recover to its steady-state condition without instability 

or severe voltage fluctuations. 

              When RoCoF or frequency deviation exceeds certain thresholds, protection 

devices would disconnect generators from the grid [51][52]. In fact, RoCoF related 

protection was found to be one of the main factors that limit the shift towards a 100% 

converter-based power system in Ireland [53]. If the frequency drops rapidly due to 

insufficient inertia, conventional generators may not be fast enough to respond to the 

deviation resulting in lower nadir and activation of load shedding. On August 9, 2019, 
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over a million customers were affected by a major power disruption (mainly came 

from offshore wind farms) that occurred across England and Wales and some parts of 

Scotland, and the frequency of the system hit 48.8 Hz [54]. The impact of RESs 

integration on power systems has been studied to address frequency stability 

challenge. In [55], the authors explored the massive deployment of grid-forming 

converters and its effects on frequency stability, results show that the system stability 

is lost when converter-based resources penetration reaches 80%. The Electric 

Reliability Council of Texas (ERCOT) studied the effect of low inertia on grid 

security and reliability [56]-[57]. To ensure frequency stability, the enhanced 

frequency response has been introduced in Great Britain recently which includes 

technologies like battery storage, interconnectors, and demand response [58]. 

Frequency control ancillary services have been implemented in the Australian 

National Electricity Market to maintain the system stability [59]. 

4.1.1 Operation in Low Inertia Power System 

              The economic objective function in SCUC takes into account the cost of 

generation and other factors. Frequency-related constraints can also be included in the 

objective function to reflect the importance of maintaining frequency stability. This 

ensures that the optimization process considers the impact of different generation and 

dispatch decisions on the system frequency. 

              Several transmission system operators impose extra inertia constraints in the 

conventional unit commitment model to keep the minimum amount of synchronous 

inertia online [60]. Federal Energy Regulatory Commission has suggested that 
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frequency control capabilities will need to be imposed into traditional unit 

commitment [61]. EirGrid has also introduced a synchronous inertial response (SIR) 

constraint to ensure that the available inertia does not fall below a static limit of 

23,000 MWs in Ireland [62].                                     

              The optimal power flow with primary frequency response related constraint is 

investigated in [63]. Refs. [64] and [65] derived the analytical expression of the 

system frequency response model, frequency-related constraints are incorporated into 

traditional unit commitment: enforcing limitations on RoCoF, frequency nadir and 

steady-state error that are derived from a uniform frequency response model. Ref. [66] 

studies the system equivalent model based RoCoF constrained SCUC (ERC-SCUC). 

A novel mixed-integer linear programming (MILP) unit commitment formulation was 

proposed in [67], which simultaneously optimizes energy production and the 

allocation of inertia. Despite these great efforts of modeling the classic system 

frequency response, previous studies rely on a simplification of the actual frequency 

dynamics and collective performance of system that cannot be able to capture the 

entire system characteristics.  

              The distinct frequency responses experienced by different bus have been 

observed in recent publications. System equivalent model-based operations may fail to 

supply sufficient ancillary services against contingency. Ref. [68] has shown that 

generators on the buses adjacent to the event may suffer higher RoCoF comparing to 

distant buses. Similar conclusion has been made in [18] that the relative location of 

measurement point to disturbance is a pertinent factor in system inertial response, the 
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RoCoF is usually higher for location where networks are weakly interconnected. To 

guarantee frequency stability accounting for spatial variation, a mixed analytical 

numerical approach based on multi-regions has been studied in [4], which investigated 

the model combining evolution of the center of inertia and certain inter-area 

oscillations, stability conditions are proposed to co-optimize the existing ancillary 

services. Regarding oscillations mitigations, network coherency was considered as an 

alternative performance metric in [69], and a system dynamic model was formulated 

to determine the optimal allocation of additional inertia based on the disturbance 

location against high nodal frequency excursions.  

4.1.2 Additional Inertia  

              Synchronous condenser (SC) traditionally provides reactive power 

compensation and keeping voltage stability in power systems [70]. Ref. [71] 

investigates the approach of using SC for decreasing under frequency load shedding. 

Interaction between active power and reactive power channels of synchronous 

condensers to improve primary frequency control is studied in [72]. SC is an alternator 

that can provide inherently inertial response due to the electromechanical coupling 

with the grid [73]. The kinetic energy stored in its rotating mass can naturally 

counteract the frequency change during disturbances.  

              Besides SC and induction motors, wind turbine active control and virtual 

inertia (VI) wind power has been considered as an important RES in modern power 

system. Active control of wind turbines enables the synthetic inertia response of the 

wind power plants [74]. A wind turbine may reduce its rotational speed in order to 
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release the reserved power generation capacity if it is working in the over-speed zone 

instead of maximal power points tracking (MPPT). Such inertia control enables wind 

power plants to increase their power outputs to counteract the power imbalance in the 

event by discharge the kinetic energy stored in wind turbines. 

             Recently, a plethora of strategies has been proposed to emulate synchronous 

machine models of various degrees of fidelity under names such as synthetic inertia or 

virtual synchronous machine [75]-[77]. These studies have demonstrated the efficacy 

of virtual inertia (VI) method which imitates the kinetic inertia of synchronous 

generator to improve the system dynamic behavior [78][102]. There are different 

implementations for synchronous machine response emulation with varying fidelity. 

Virtual inertia techniques for solar PV generation have been investigated by [79]. It is 

noted that the virtual inertia requires fast responsive energy buffer; the kinetic energy 

in a wind turbine and the energy in a battery are limited energy resources for virtual 

inertia responses. 

4.2 System Dynamic Modeling 

              The synchronous generator provides inertia to the power system through 

strongly coupled mechanical dynamics and electrical dynamics. Following a sudden 

change in load or a generation contingency, the dynamic behavior of the system 

frequency can be described using the swing equation of system equivalent single-

machine representation, 

 𝑃𝑚 − 𝑃𝑒 = 𝑀𝑠𝑦𝑠

𝜕∆𝜔

𝜕𝑡
+ 𝐷𝑠𝑦𝑠∆𝜔,  (4.1) 
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where 𝑀𝑠𝑦𝑠  and 𝐷𝑠𝑦𝑠  are the aggregated system inertia constant and damping 

coefficient corresponding to the committed synchronous generators respectively. 𝑃𝑚 is 

the mechanical input power change. 𝑃𝑒 is the electrical output power change. 

              The transmission network can be modeled as a graph consisting of nodes 

(buses) and edges (branches). Using the topological information and the system 

parameters, the swing equation can then be extended and reformulated to describe the 

oscillatory behavior of each individual bus as follows [4], 

 𝑚𝑖�̈�𝑖 + 𝑑𝑖�̇�𝑖  =  𝑃𝑖𝑛,𝑖
(0)

−  𝑃𝑒,𝑖, 𝑖 ∈  {1, … , 𝑛}, (4.2) 

where mi  and di  denote the inertia coefficients and damping ratio for node i 

respectively, while 𝑃𝑖𝑛,𝑖
(0)

 and 𝑃𝑒,𝑖  refer to the power input and power output 

respectively. The electrical output power 𝑃𝑒,𝑖  at bus 𝑖 is only related to the voltage 

phase angles as illustrated by (4.3), 

 
𝑃𝑒,𝑖 = ∑𝑏𝑖𝑗  𝑠𝑖𝑛 (𝜃𝑖 −  𝜃𝑗)

𝑛

𝑗=1

,   𝑖 ∈ {1,… , 𝑛}. (4.3) 

              By substituting (4.3) into (4.2), the network-coupled dynamical systems 

defined by sets of differential equations of the form, 

𝑚𝑖�̈�𝑖 + 𝑑𝑖�̇�𝑖  =  𝑃𝑖𝑛,𝑖
(0)

−  ∑𝑏𝑖𝑗 𝑠𝑖𝑛 (𝜃𝑖  −  𝜃𝑗)

𝑛

𝑗=1

,   

𝑖 ∈ {1,… , 𝑛}. 

(4.4) 

              With inertia on certain nodes 𝑚𝑖 > 0, it is an approximation model for the 

swing dynamics of high-voltage transmission network within a few seconds after the 



69 

 

event [80]. In this transient time interval, the network is justified as power system 

where the ratio factor of branch reactance to its resistance is high. Reactive power and 

voltage magnitude are not of concern, voltage amplitudes of the system are considered 

constant. The linear approximation sin (θi −  θj) ≈ θi −  θj can be justified since the 

angle difference across the branch are small. Then eliminating passive load buses via 

Kron reduction [81], we can obtain a network-reduced model with N generator buses. 

The phase angle θ of generator buses can be expressed by the following dynamic 

equation,  

 𝑀�̈�  +  𝐷 �̇�  =  𝑃 − 𝐿 𝜃,      (4.5) 

where 𝑀 = diag({𝑚𝑖}), 𝐷 = diag({di}). Thus, for the Laplacian matrix L of the grid, its 

off-diagonal elements are 𝑙𝑖𝑗 = −𝑏𝑖𝑗𝑉𝑖
(0)

𝑉𝑗
(0)

 and diagonals are  lij =

∑ 𝑏𝑖𝑗𝑉𝑖
(0)

𝑉𝑗
(0)𝑛

𝑗=1,𝑗≠𝑖 . In this paper, the Laplacian matrix of the network-reduced model 

is real and symmetric [82], which has a complete orthogonal set of eigenvectors {β
α
} 

with eigenvalue {λ𝛼}. Due to the construction of the Laplacian matrix L we have zero 

row and column sums, which implies that there is  λ1 = 0 , corresponding to an 

eigenvector with constant elements, (𝛽1)
𝑇 = {

1,…,1

√𝑁𝑔
}. Higher eigenvalues 𝜆𝛼  of L are 

strictly positive for 𝛼 = {2, … , 𝑁𝑔}, where N is the number of generator buses, and the 

second-smallest eigenvalue is the algebraic connectivity [81]. Approach proposed in 

[83] have shown high accuracy and robustness in identifying the critical nodes 

accounting for spatial inertia distribution. Under the assumption of homogeneous 

inertia, the frequency deviations at bus 𝑖 can then be derived, 
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 𝛿𝜃�̇�(𝑡) =  
∆𝑃𝑒−

𝛾𝑡
2

𝑚
∑

(

 
 

𝛽𝛼𝑖𝛽𝛼𝑏

𝑠𝑖𝑛 (√𝜆𝛼

𝑚 −
𝛾2

4 𝑡)

√𝜆𝛼

𝑚 −
𝛾2

4 )

 
 

,

𝑁𝑔

𝛼=1

 (4.6) 

where 𝑚  denotes average inertia distribution on generator buses; and bus 𝑏  is the 

location where disturbance occurs. With both damping and inertia being bounded at 

each bus, the ratio of damping coefficient to inertia coefficient is strictly prescribed 

within narrow ranges, 𝛾 = 𝑑𝑖/𝑚𝑖 , which is assumed as a constant [84]. As the 

frequency is monitored at discrete time interval, we consider a measurement window 

length of ∆t, then RoCoF on bus 𝑖, 𝑅𝑖(𝑡), can be calculated as, 

 𝑅𝑖(𝑡) = −
𝛿𝜃�̇�(𝑡 + ∆𝑡) −  𝛿𝜃�̇�(𝑡)

2𝜋∆𝑡
. (4.7) 

After substituting (4.6) into (4.7), we can obtain, 

 𝑅𝑖(𝑡) =
∆𝑃𝑒

−
𝛾𝑡
2

2𝜋𝑚
∑

𝛽𝛼𝑖𝛽𝛼𝑏

√𝜆𝛼
𝑚

−
𝛾2

4
∆𝑡

[
 
 
 
 𝑒−

𝛾∆𝑡

2 𝑠𝑖𝑛 (√
𝜆𝛼

𝑚
−

𝛾2

4
(𝑡 + ∆𝑡))

−𝑠𝑖𝑛 (√
𝜆𝛼

𝑚
−

𝛾2

4
𝑡)

]
 
 
 
 

𝑁𝑔

𝛼=1 .  (4.8) 

              Expression (4.9) is the position-independent contribution 𝑅𝑖
(1), which is the 

term corresponding to 𝛼 = 1 in (8). It can be observed that term 𝛼 = 1 describes the 

dynamics of system equivalent model,  

 𝑅𝑖
(1)(𝑡) =

∆𝑃𝑒−𝛾𝑡(1 − 𝑒−𝛾∆𝑡)

2𝑁𝑔𝜋𝑚𝛾∆𝑡
. (4.9) 

The initial inertial response can then be calculated as, 

 𝑙𝑖𝑚
∆𝑡→0,   𝑡→0

𝑅𝑖
(1)(𝑡) =

∆𝑃

2𝜋𝑁𝑔𝑚
, (4.10) 
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which corresponds to the inertia response of system equivalent model. In (4.8)-(4.10), 

the inertia coefficient m plays a vital role in the first few seconds which is inversely 

proportional to the RoCoF; higher inertia coefficient results in mitigated RoCoF value 

and oscillation amplitude, which allows longer responding time for the primary 

control to act.  

              Further study also suggests that amplitude and period of higher oscillations 

corresponding to terms α>1 all depend on √𝜆𝛼 𝑚⁄ − 𝛾2 4⁄ . For IEEE 24-bus system, 

√𝜆𝛼 𝑚⁄ − 𝛾2 4⁄ ∈ [0.88,  14.18] , √𝜆𝛼≥3 𝑚⁄ − 𝛾2 4⁄  is almost twice large than the 

second one. High-lying terms with large eigenvalues λα contribute much less than the 

second slowest eigenmode, i.e. the Fielder mode, of the system Laplacian matrix 

𝐿 [83]. Meanwhile higher-lying modes have short-period contributions, therefore only 

the first few eigenmodes of the network Laplacian, corresponding to its lower 

eigenvalues, mainly impact the value. In this study, we neglect them in the qualitative 

discussions and consider the RoCoF contributions from terms α ≤ 2. The simplified 

but effective function to calculate nodal RoCoF is given as follows, 

 

𝑅𝑖
(1,2)(𝑡) = 

∆𝑃𝑒−𝛾𝑡(1 − 𝑒−𝛾∆𝑡)

2𝑁𝑔𝜋𝑚𝛾∆𝑡
+

∆𝑃𝑒−𝛾
𝑡
2

2𝜋𝑚

𝛽2𝑖𝛽2𝑏

√𝜆2

𝑚 −
𝛾2

4 ∆𝑡

 

[𝑒−𝛾
∆𝑡

2 𝑠𝑖𝑛 (√
𝜆2

𝑚
−

𝛾2

4
(𝑡 + ∆𝑡)) − 𝑠𝑖𝑛 (√

𝜆2

𝑚
−

𝛾2

4
𝑡)].  

(4.11) 

 

              By monitoring the average frequency change, the RoCoF relays can make 

more secure decisions during contingency. Practically, the time interval or measuring 
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window for calculating RoCoF ranges from 5 cycles to 10 cycles [85]. In this paper, 

the average frequency change over a period of 100 ms (6 cycles) is defined as the 

RoCoF value. 

4.3 Derivation of Locational RoCoF Constraints 

              We first focus on the impact of oscillations, RoCoF experienced by different 

generator buses can be different depending on their inertia coefficient and electrical 

distance from the disturbance, and the concept of local RoCoF is proposed in [86], 

generators in some areas would then suffer much higher RoCoF and have a higher 

chance to get tripped [87].  

              Fig. 4.1 shows the distribution of Fiedler mode of the Laplacian matrix 

corresponding to the reduced network of the IEEE 24-bus system via Kron reduction. 

The original model has nodes where inertia mi = 0  which gives the celebrated 

Kuramoto model on a network where angle differences become very large, which is 

not suitable for high-voltage electric power system analysis in this work. Fiedler mode 

of the reduced model manifests the frequency dynamics of individual generator bus 

regarding system connectivity and disturbance propagation [88].  
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Fig. 4.1 Fiedler mode distribution.  

              To investigate how Fiedler mode affects the locational inertial response and 

the operation of relating ancillary services, simulations are conducted on the IEEE 24-

bus system with a step increase of 180 MW load on bus 18. Dynamic simulation 

results are depicted in Fig. 2(a), as we can see that the frequency deviations at bus 13 

and bus 23 are close to the deviation at center of inertia (COI) within the whole 

monitoring course. The largest deviation is observed at bus 7 corresponding to the 

highest Fiedler mode absolute value.  

              These deviations in frequency can influence the locational frequency at 

different buses depending on the size and configuration of the system. Traditionally, 

generators adjacent to the event is assumed perceive highest RoCoF comparing to the 

generators on distant buses [55]. While results of [4] and [83] have emphasized the 

impact of oscillation and disturbance propagation, buses in distance may experience 

highest RoCoF after a time delay instead of at the initial time point. From the 

expression (10), it can be inferred that local buses sharing the same positive or 
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negative Fiedler mode with the event bus would perceive larger deviation before COI 

frequency, while the non-local generator buses with opposite positive and negative 

Fiedler mode may experience highest RoCoF later than the COI frequency. Simulation 

results shown in Fig. 2(b) prove our inference.      

 

(a) Frequency for period between t=0 and t=3.5s. 

 

(b) Frequency for the period between t=1.5s and t=2.5s. 

Fig. 4.2 Frequency response following a disturbance on bus 18. 

              Following a contingency, there are larger frequency excursions and higher 

RoCoF on non-local generator buses to the disturbance comparing to COI frequency. 

For these non-local generator buses of opposite positive and negative Fiedler mode 
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value with disturbance bus, highest RoCoF occurs with a time period delay due to the 

disturbance propagation. 

              To guarantee the locational frequency security for all buses and mitigate the 

highest RoCoF during the oscillation, a multiple-measurement-window method is 

introduced to capture the highest RoCoF during the oscillation. Compared to the case 

of a sudden load increase, the loss of generation not only causes mismatch in system 

power balance, but also the degradation of the system synchronous inertia, resulting in 

even higher frequency deviation and larger initial RoCoF. Thus, the G-1 contingency 

of largest generation is considered as the worst contingency in this paper. And the 

aforementioned RoCoF expression in (11) are then incorporated as constraints in 

SCUC, the resulting locational RoCoF constraint (12) that respects the prescribed 

threshold RoCoFlim is then reformulated as follows with t being set as T1 andT2. These 

two typical setting points are same for all generator buses in this case, which is mainly 

based on oscillation period of second lowest term α = 2 , considering trade-off 

between computational efficiency and measurement accuracy. Note that the 

responding time of primary control is considered starting from 3 seconds; even with 

fast frequency response, the general responding time is considered from 0.5s to 1.5s, 

which is still later than T2. Hence, primary control is not considered when calculating 

nodal RoCoF. The derived constraint is then defined as, 

∆Pe
−γ

t
2(1 − e−γ∆t)

2Ngπ𝑚∆γ∆t
+

∆Pe
−γ

t
2

2π𝑚∆

𝛽2𝑖𝛽2𝑏

√
λ2

𝑚∆
−

γ2

4
∆t

 (4.12) 
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[
 
 
 
 
 
 
e
−γ

∆t
2 sin (√

λ2

𝑚∆

−
γ2

4
(t + ∆t))

− sin (√
λ2

𝑚∆

−
γ2

4
t)

]
 
 
 
 
 
 

≥ RoCoFlim, 

where 𝑚∆ = m − ∆m, ∆m denotes an average loss of inertia coefficient distributed on 

each bus, Ng is the number of generator buses. Within a plausible range of variables 

(∆𝑃, m, ∆m, γ), the RoCoF on all generator buses following a G − 1 contingency can 

be calculated with the left-hand side terms of (4.12). 

4.4 Formulation of LRC-SCUC 

              The objective of SCUC is to minimize operational cost of generators subject 

to various constraints. Traditional SCUC (T-SCUC) model does not consider 

frequency constraints, which may lead to severe system instability issue for lower-

inertia power grid with substantial amount of renewable generation. In this section, we 

first introduce the T-SCUC and then describe how to incorporate RoCoF related 

constraints into the ERC-SCUC and the proposed LRC-SCUC. Subsequently, we will 

describe the proposed VI-LRC-SCUC model that utilize virtual inertia. 

              Objective function (4.13) is shared by three SCUC models: T-SCUC, ERC-

SCUC and LRC-SCUC. It is to minimize the total system cost consisting of variable 

fuel costs, no-load costs, start-up costs, and reserve costs.  

              The T-SCUC model includes various constraints (4.14)-(4.27). Equation 

(4.14) enforces the nodal power balance. Network power flows are calculated in (4.15) 

and are restricted by the transmission capacity as shown in (4.16). The scheduled 
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energy production and generation reserves are bounded by unit generation capacity 

and ramping rate (4.17)-(4.22). As defined in (4.20), the reserve requirements ensure 

the reserve is sufficient to cover any loss of a single generator. The start-up status and 

on/off status of conventional units are defined as binary variables (4.23)-(4.27), 

 𝑚𝑖𝑛
𝛷

∑ ∑(𝑐𝑔𝑃𝑔,𝑡 + 𝑐𝑔
𝑁𝐿𝑢𝑔,𝑡 + 𝑐𝑔

𝑆𝑈𝑣𝑔,𝑡+𝑐𝑔
𝑅𝐸𝑟𝑔,𝑡)

𝑡 ∈𝑇𝑔 ∈𝐺

, (4.13) 

 

∑ 𝑃𝑔,𝑡

𝑔 ∈𝐺

+ ∑ 𝑃𝑔,𝑡

𝑘 ∈𝐾(𝑛−)

− ∑ 𝑃𝑔,𝑡

𝑘 ∈𝐾(𝑛+)

− 𝐷𝑛,𝑡 

+ 𝐸𝑛,𝑡  =  0, ∀𝑛, 𝑡,  

(4.14) 

 𝑃𝑘,𝑡 − 𝑏𝑘(𝜃𝑛,𝑡 − 𝜃𝑚,𝑡)  =  0, ∀𝑘, 𝑡,  (4.15) 

 −𝑃𝑘
𝑚𝑎𝑥  ≤  𝑃𝑘,𝑡  ≤  𝑃𝑘

𝑚𝑎𝑥, ∀𝑘, 𝑡,   (4.16) 

 𝑃𝑔
𝑚𝑖𝑛𝑢𝑔,𝑡  ≤  𝑃𝑔,𝑡, ∀𝑔, 𝑡,  (4.17) 

 𝑃𝑔,𝑡 + 𝑟𝑔,𝑡  ≤  𝑢𝑔,𝑡𝑃𝑔
𝑚𝑎𝑥, ∀𝑔, 𝑡,  (4.18) 

 0 ≤  𝑟𝑔,𝑡  ≤  𝑅𝑔
𝑟𝑒𝑢𝑔,𝑡, ∀𝑔, 𝑡,   (4.19) 

 ∑ 𝑟𝑗,𝑡  ≥

𝑗 ∈𝐺

𝑃𝑔,𝑡 + 𝑟𝑔,𝑡, ∀𝑔, 𝑡,  (4.20) 

 𝑃𝑔,𝑡 − 𝑃𝑔,𝑡−1  ≤  𝑅𝑔
ℎ𝑟 , ∀𝑔, 𝑡, (4.21) 

 𝑃𝑔,𝑡−1 − 𝑃𝑔,𝑡 ≤ 𝑅𝑔
ℎ𝑟 , ∀𝑔, 𝑡, (4.22) 

 𝑣𝑔,𝑡  ≥  𝑢𝑔,𝑡 − 𝑢𝑔,𝑡−1,     ∀𝑔, 𝑡, (4.23) 

 𝑣𝑔,𝑡+1  ≤  1 − 𝑢𝑔,𝑡     ∀𝑔, 𝑡 ≤ 𝑛𝑇 − 1, (4.24) 

 𝑣𝑔,𝑡  ≤  𝑢𝑔,𝑡     ∀𝑔, 𝑡, (4.25) 

 𝑣𝑔,𝑡 ∈ {0,1}, ∀𝑔, 𝑡,  (4.26) 
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 𝑢𝑔,𝑡 ∈ {0,1}, ∀𝑔, 𝑡. (4.27) 

              As mentioned before, the ERC-SCUC model is constrained to guarantee 

generator frequency stability considering the relative location to the potential 𝐺 − 1 

contingency. Loss of synchronous generation would lead to a reduction in total system 

inertia which would cause a higher RoCoF comparing to the event with no 

synchronous inertia loss. The system RoCoF limit following a 𝐺 − 1 contingency is 

guaranteed by applying the following set of frequency related constraints (4.28)-

(4.30). (4.28) defines the rated power of dispatched generators, while (4.30) calculates 

the system synchronous inertia. (4.30) is derived from the swing equation of system 

equivalent model, the constraint ensures the system frequency security against loss of 

generation, 

 𝑘𝑔,𝑡  =  𝑃𝑔
𝑚𝑎𝑥𝑢𝑔,𝑡,         ∀ 𝑔, 𝑡, (4.28) 

 𝑀𝑡  =  
∑ 2𝐻𝑔𝑘𝑔,𝑡𝑔 ∈𝐺

𝜔0
,         ∀𝑡, (4.29) 

 𝑃𝑔,𝑡 (𝑀𝑡𝜔0 − 2𝐻𝑔𝑘𝑔,𝑡)⁄ ≤  −𝑅𝑜𝐶𝑜𝐹𝑙𝑖𝑚     ∀𝑔, 𝑡. (4.30) 

              If the generation scheduling is not appropriately constrained to reflect the 𝐺 −

1 contingency and distinct locational frequency, unexpected tripping of RoCoF relays 

and cascading contingency may take place. To address this issue, squared Fiedler 

mode amplitude 𝛽2b
2  is introduced in this paper to assess the impact of disturbance, a 

power loss at bus 𝑏, on frequencies in the whole grid. Considering the inter oscillation 

between area which may cause unexpected tripping of RoCoF relays, we create two 

locational RoCoF constraints in this paper based on the definition of local buses and 
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non-local buses. Constraint (4.31)-(4.33) defines the average nodal inertia change over 

generator buses due to loss of a generator. Constraints (4.34) and (4.35) ensure system 

stability by imposing limit on locational highest captured RoCoF of buses under 

possible worst 𝐺 − 1 contingency, 

 
∆𝑚𝑔,𝑡 =

2𝐻𝑔𝑘𝑔,𝑡

𝑁𝑔𝜔0
,         ∀𝑔, 𝑡, (4.31) 

 
𝑚𝑡 =

𝑀𝑡

𝑁𝑔
,         ∀𝑡, (4.32) 

 𝑚𝑔,𝑡 = 𝑚𝑡 − ∆𝑚𝑔,𝑡,         ∀𝑔, 𝑡, (4.33) 

 
𝑃𝑔,𝑡𝑒

−𝛾𝑇1(1 − 𝑒−𝛾∆𝑡)

2𝑁𝑔𝜋𝑚𝑔,𝑡𝛾∆𝑡
 + 

𝑃𝑔,𝑡𝑒
−𝛾

𝑇1
2

2𝜋𝑚𝑔,𝑡

𝛽2𝑛𝛽2𝑏

√
𝜆2

𝑚𝑔,𝑡
−

𝛾2

4 ∆𝑡

 

[
 
 
 𝑒−𝛾

∆𝑡

2 𝑠𝑖𝑛 (√
𝜆2

𝑚𝑔,𝑡
−

𝛾2

4
(𝑇1 + ∆𝑡))

− 𝑠𝑖𝑛 (√
𝜆2

𝑚𝑔,𝑡
−

𝛾2

4
𝑇1) ]

 
 
 

  ≤ − RoCoFlim, 

∀n ∈ Nloc,g, g,t, 

(4.34) 

 
𝑃𝑔,𝑡𝑒

−𝛾𝑇2(1 − 𝑒−𝛾∆𝑡)

2𝑁𝑔𝜋𝑚𝑔,𝑡𝛾∆𝑡
 + 

𝑃𝑔,𝑡𝑒
−𝛾

𝑇2
2

2𝜋𝑚𝑔,𝑡

𝛽2𝑛𝛽2𝑏

√
𝜆2

𝑚𝑔,𝑡
−

𝛾2

4 ∆𝑡

 

[
 
 
 𝑒−𝛾

∆𝑡

2 𝑠𝑖𝑛 (√
𝜆2

𝑚𝑔,𝑡
−

𝛾2

4
(𝑇2 + ∆𝑡))

− 𝑠𝑖𝑛 (√
𝜆2

𝑚𝑔,𝑡
−

𝛾2

4
𝑇2) ]

 
 
 

 ≤ −RoCoFlim,   

∀𝑛 ∈ 𝑁𝑛−𝑙𝑜𝑐,𝑔, 𝑔, 𝑡.  

(4.35) 
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              There are different implementations for synchronous machine response 

emulation. The study in [89] shows that control schemes can be utilized to provide 

equivalent inertia through non-synchronous devices. Such concept introduces 

techniques like virtual inertia emulation to mimic the behavior of synchronous 

machines, displacing the inertia provided by synchronous generators with cheap 

inertia ancillary service provided by various resources such as virtual synchronous 

machine. To study the effect of virtual inertia on the power grid, an aggregated virtual 

inertia involved location based RoCoF constrained SCUC model or a VI-LRC-SCUC 

model is proposed and examined in this paper. Compared to (4.13), this model also 

considers the cost for virtual inertia provision; the updated objective function for the 

proposed VI-LRC-SCUC model is shown in (4.35). Moreover, when virtual inertia is 

considered, constraints (4.29)-(4.30) should be replaced by (4.37)-(4.38). Expression 

(4.37) describes the system inertial response respect to aggregate inertia contributions 

from condensers and inverter-based resources. (4.38) defines the change in average 

nodal inertia while virtual inertia is applied, 

𝑚𝑖𝑛
𝛷

∑ ∑(𝑐𝑔𝑃𝑔,𝑡 + 𝑐𝑔
𝑁𝐿𝑢𝑔,𝑡 + 𝑐𝑔

𝑆𝑈𝑣𝑔,𝑡+𝑐𝑔
𝑅𝐸𝑟𝑔,𝑡)

𝑡 ∈𝑇𝑔 ∈𝐺

+∑ 𝑐𝑉𝐼𝑀𝑡
𝑉𝐼 

𝑡 ∈𝑇

,      (4.36) 

−𝑃𝑔,𝑡 (𝑀𝑡𝜔0 + 𝑀𝑡
𝑉𝐼𝜔0 − 2𝐻𝑔𝑘𝑔,𝑡)⁄ ≥  𝑅𝑜𝐶𝑜𝐹𝑙𝑖𝑚, 

  ∀g ,t, 

(4.37) 

     𝑚𝑡 =
𝑀𝑡

𝑁𝑔
+

𝑀𝑡
𝑉𝐼

𝑁𝑔
,     ∀𝑡,   (4.38) 
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              The virtual inertia requires fast responsive energy buffer; the kinetic energy in 

a wind turbine and the energy in a battery are limited energy resources for virtual 

inertia responses. Hence, it is practical to set a limit on the total virtual inertia due to 

budget limit and resource limit. This limit should also be considered as follows, 

0 ≤  𝑀𝑡
𝑉𝐼  ≤  𝑀𝑡

𝑇𝑜𝑡𝑎𝑙 ,     ∀𝑡,  (4.39) 

              We examine five different SCUC models that are summarized in Table 4.1. In 

this table, the objective functions and constraints enforced are listed for each SCUC 

model. 

Table 4.1 SCUC Formulation of Different Models 

Model  
Objective 

Function 

Shared 

Constraints 

Unique 

Constraints 

T-SCUC 

(4.13) 

(4.14)-(4.27) 

None 

ERC-SCUC (4.28)-(4.30) 

LRC-SCUC 
(4.28)-(4.29), (4.31)-

(4.35) 

VI-ERC-

SCUC 

(4.36) 

(4.28)-(4.29), (4.37), 

(4.38) 

VI-LRC-

SCUC 

(4.28)-(4.29), (4.31), 

(4.33)-(4.35), (4.37)-

(4.39) 

              Note that non-linear constraints (4.34) and (3.35) are linearized with the PWL 

method described in Section 4.5 before solving the associated SCUC models. 
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4.5 Piecewise Linearization 

              The constraints on RoCoF for locational frequency dynamics are nonlinear. 

In order to incorporate these frequency-related constraints into the proposed LRC-

SCUC model, a linear approximation method is introduced.  [90] proposes a piece-

wise linearization technique for obtaining a linearized expression. Since respective 

damping and droop gains are usually strictly prescribed proportional to the 

synchronous inertia, the RoCoF expression becomes a function of three variables 

𝑅𝑖
(1,2)(∆𝑃,𝑚, ∆𝑚). The expression has local convexity within the interval of interest, 

that can be expressed as 𝑎𝑣
𝑖 ∆𝑃𝜂  + 𝑏𝑣

𝑖 𝑚𝜂  +  𝑐𝑣
𝑖∆𝑚𝜂  +  𝑑𝑣

𝑖 . In order to determine 

these four coefficients, A heuristic least-squares method is proposed in [91] to solve 

this problem.   

              The least squares based PWL method aims to minimize the following 

objective function, 

𝑚𝑖𝑛
𝛹

∑( 𝑚𝑎𝑥
1≤𝑣 ≤ �̅�

{𝑎𝑣
𝑖 ∆𝑃𝜂  +  𝑏𝑣

𝑖 𝑚𝜂  +  𝑐𝑣
𝑖∆𝑚𝜂  +  𝑑𝑣

𝑖 }

𝜂

− 𝑅𝑖
(1,2)(∆𝑃𝜂 , 𝑚𝜂 , ∆𝑚𝜂))

2

 , 

(4.40) 

where 𝛹 =  {𝑎𝑣, 𝑏𝑣, 𝑐𝑣, 𝑑𝑣, ∀𝑣} is the set of parameters to be determined; 𝑖 denotes the 

measurement bus; and 𝜂 denotes the evaluation point; 𝑣 refers to the index of PWL 

segments and �̅�  denotes the number of PWL segments. The problem of fitting 

𝑚𝑎𝑥
1≤𝑣 ≤ �̅�

{𝑎𝑣
𝑖 ∆𝑃𝜂  +  𝑏𝑣

𝑖 𝑚𝜂  +  𝑐𝑣
𝑖∆𝑚𝜂  +  𝑑𝑣

𝑖 }  to −𝑅𝑖
(1,2)(∆𝑃𝜂 , 𝑚𝜂 , ∆𝑚𝜂)  over the 

plausible range can be considered as minimizing difference between the appropriate 

PWL segment and the RoCoF function. To solve this min-max problem and eliminate 
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the inner max operator from the objective function, new variables tv are introduced 

and defined as follows, 

𝑡1
𝑖  =  𝑚𝑎𝑥{𝑎1

𝑖 ∆𝑃𝜂  +  𝑏1
𝑖𝑚𝜂  + 𝑐1

𝑖∆𝑚𝜂  +  𝑑1
𝑖 ,  

𝑎2
𝑖 ∆𝑃𝜂  +  𝑏2

𝑖𝑚𝜂  + 𝑐2
𝑖∆𝑚𝜂  + 𝑑2

𝑖  }, 

(4.41) 

𝑡𝑣−1
𝑖 = 𝑚𝑎𝑥{𝑡𝑣−2

𝑖 , 𝑎𝑣
𝑖 ∆𝑃𝜂 + 𝑏𝑣

𝑖 𝑚𝜂 + 𝑐𝑣
𝑖∆𝑚𝜂 + 𝑑𝑣

𝑖 } , 3 ≤  𝑣 ≤  �̅�. (4.42) 

              Adding new linear inequalities would relieve the objective function from the 

“max” operator [90]. We basically introduce �̅� − 1 new binary αv as well as �̅� − 1 

continuous variables 𝑡𝑣
𝑖 , the unconstrained min-max optimization problem (4.40) can 

be reformulated as a constrained optimization problem (4.43)-(4.47), which is the 

RoCoF linearization problem, 

𝑚𝑖𝑛
𝛹

∑(𝑡�̅�−1
𝑖 (∆𝑃𝜂 ,𝑚𝜂 , ∆𝑚𝜂)−𝑅𝑖

(1,2)(∆𝑃𝜂 , 𝑚𝜂 , ∆𝑚𝜂))2

𝜂

, (4.43) 

subject to the following constraints,  

 

𝑎1
𝑖 ∆𝑃𝜂  +  𝑏1

𝑖𝑚𝜂  +  𝑐1
𝑖∆𝑚𝜂  +  𝑑1

𝑖  ≤  𝑡1
𝑖  ≤  𝑎1

𝑖 ∆𝑃𝜂 + 𝑏1
𝑖𝑚𝜂  + 𝑐1

𝑖∆𝑚𝜂  +

 𝑑1
𝑖  +  𝛼1

𝑖𝛺 , ∀𝜂,  
(4.44) 

 

𝑎2
𝑖 ∆𝑃𝜂  +  𝑏2

𝑖𝑚𝜂  + 𝑐2
𝑖∆𝑚𝜂  + 𝑑2

𝑖  ≤  𝑡1
𝑖  ≤  𝑎2

𝑖 ∆𝑃𝜂 + 𝑏2
𝑖𝑚𝜂  +  𝑐2

𝑖∆𝑚𝜂  +

 𝑑2
𝑖  +  (1 − 𝛼1

𝑖 )𝛺,    ∀𝜂,  
(4.45) 

 𝑡𝑣−2
𝑖  ≤  𝑡𝑣−1

𝑖  ≤  𝑡𝑣−2
𝑖  +  𝛼𝑣−1

𝑖 𝛺,    ∀𝜂, 3 ≤  𝑣 ≤  �̅�, (4.46) 

 

𝑎𝑣
𝑖 ∆𝑃𝜂  +  𝑏𝑣

𝑖 𝑚𝜂  +  𝑐𝑣
𝑖∆𝑚𝜂  +  𝑑𝑣

𝑖  ≤  𝑡𝑣−1
𝑖  ≤  𝑎𝑣

𝑖 ∆𝑃𝜂 + 𝑏𝑣
𝑖 𝑚𝜂  +

 𝑐𝑣
𝑖∆𝑚𝜂  +  𝑑𝑣

𝑖  +  (1 − 𝛼𝑣−1
𝑖 )𝛺,    ∀𝜂,3 ≤ v ≤ v̅,  

(4.47) 

where 𝛺 is a sufficiently large positive number. 
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              Upon obtaining the optimal solution (𝑎𝑣
∗ , 𝑏𝑣

∗, 𝑐𝑣
∗, 𝑑𝑣

∗)  of the nodal RoCoF 

linearization model, the nonlinear location based RoCoF constraints (4.34) and (4.35) 

can be converted into linear constraints in SCUC: 4 ∗ (�̅� − 1) inequalities that ensures 

𝑡�̅�−1
𝑖  is maximum, along with the RoCoF threshold constraints 𝑡�̅�−1

𝑖  ≤  −𝑅𝑜𝐶𝑜𝐹𝑙𝑖𝑚. 

              A new metric, RoCoF violation gap, is proposed to quantify the performance 

of different SCUC models in terms of frequency response particularly the inertial 

response. The RoCoF violation gap is defined as follows, 

𝑅𝑜𝐶𝑜𝐹  𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑔𝑎𝑝 = 𝑅𝑜𝐶𝑜𝐹 𝑅𝑜𝐶𝑜𝐹𝑙𝑖𝑚⁄ − 1 ,   ∀𝑡. (4.48) 

4.6 Results Analysis 

4.6.1 Test System Description 

              A case study on IEEE 24-bus system is provided to demonstrate the 

effectiveness of the proposed methods [92]. This test system contains 24 buses, 38 

generators and 38 lines, which also considers decarbonized generation characterized 

by wind power and solar power on generator buses. Fig. 3 shows the renewable 

generation and load profile for a system scenario with 60% of maximum renewable 

energy penetration level during peak hour. Electricity demand ranges from 1,432 MW 

to a peak of 3,222 MW. The mathematical models are implemented in Python using 

Pyomo [93]-[94] and solved with the Gurobi solver [95], and the optimality gap is set 

to 0.1%. The computer with Intel® Xeon(R) W-2195 CPU @ 2.30GHz and 128 GB of 

RAM was utilized to conduct the numerical simulations.  
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Fig. 4.3 Renewable generation and load profile of the IEEE 24-bus system. 

4.6.2 Investigation of Frequency Propagation 

              In this subsection, the effect of Fiedler mode on disturbance propagation and 

locational inertial response is simulated and studied. We first investigate the 

implications of a generation loss in scenarios with different system inertia. The 

locational RoCoF is numerically calculated based on expression (4.12), RoCoF at 𝑡 = 

0s and ∆𝑡 = 0.1s on local bus 21 adjacent to event bus 18 that is illustrated in Fig. 4.4 

where the loss of largest unit is considered. It can be inferred that the initial frequency 

oscillations are affected by the location of disturbance.  
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Fig. 4.4 RoCoF of bus 21 at 𝑡 = 0s and ∆𝑡 = 0.1s following a G-1 contingency. 

 

Fig. 4.5 RoCoF of bus 1 at 𝑡 = 0s and ∆𝑡 = 0.1s following G-1 contingency.  

              The inertial response on non-local bus 1 is depicted in Fig. 4.5, generator 

buses with opposite positive and negative Fiedler mode experience a much smaller 

initial RoCoF at 𝑡 =  0𝑠. Combining results Fig. 4.5 and Fig. 4.6, it can be observed 
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that local buses adjacent to disturbance substantially experience much higher initial 

RoCoF than other buses under at 𝑡 =  0𝑠. Hence, the generators buses adjacent to 

disturbance with large Fiedler mode are more likely to violate the RoCoF limits at the 

initial time point following a 𝐺 − 1 contingency. 

 

Fig. 4.6 RoCoF of bus 1 at 𝑡 = 0.4s and ∆𝑡 = 0.1s following 𝐺 − 1 contingency. 

              The numerically calculated RoCoF for bus 1 at 𝑡 = 0.4s and ∆𝑡 = 0.1s under 

the same scenario is plotted in Fig. 4.6. It is interesting to find that local bus 1 

experiences much large RoCoF at 𝑡 = 0.4s than same RoCoF at 𝑡 = 0.0s. The results 

show that only considering the initial RoCoF may fail to capture highest locational 

RoCoF value during the oscillation, simulation results indicate the effectiveness of the 

proposed multiple-measurement-window method which allows us to incorporate the 

captured the highest RoCoF into LRC-SCUC model and subsequently secure 

locational frequency stability. 
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              It is also important to note that when system inertia drops below a certain 

threshold the RoCoF increases drastically especially for the buses have relatively large 

Fiedler mode absolute value. This subsection demonstrates the effect of inertia and 

Fiedler mode value on locational RoCoF: with higher system inertia, the amplitude of 

the oscillation decreases especially for buses with large Fiedler mode absolute value. 

4.6.3 LRC-SCUC Simulation 

              We set the system nominal frequency to 60 Hz. Regarding post-contingency 

frequency limits, RoCoF must be higher than -0.5Hz/s to avoid the tripping of RoCoF-

sensitive protection relays. In [96], generator settings have a typical damping to inertia 

ratio ranges from [0.086, 0.133]. Similar dynamic parameters are utilized in this work, 

the ratio is subsequently considered constant as 0.1 in this work. We first conduct the 

simulation of T-SCUC model for 24-hour period, which serves as a benchmark to 

show the impact of RoCoF constraints. The evaluation point and the PWL segments 

are set with 𝜂 = 3  and v̅ = 4  for accuracy and computational efficiency [96]. The 

computational time for the T-SCUC model is 95.61s while it decreases to 20.91s for 

ERC-SCUC model. A possible reason is that frequency related constraints reduce the 

size of feasible solution set, infeasible solutions are discarded earlier because of 

violating the RoCoF constraints. Meanwhile, most RoCoF related constraints in LRC-

SCUC model are not binding constraints. With PWL formulation solved offline, the 

proposed LRC-SCUC model has a computational time of 75.45s, indicating that the 

proposed LRC-SCUC model can be solved efficiently. 
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              Fig. 4.7 presents the evolutions of aggregated system inertia over the 

scheduling horizon. When net load increases during the period of hours 5-8 and hours 

16-20, the total system aggregated inertia increases as well for all three cases. 

Compared to T-SCUC model, imposing RoCoF constraints leads to more synchronous 

generators scheduled online to ensure minimum synchronous inertia online. The 

inertia of committed synchronous generators for T-SCUC model is much lower than 

ERC-SCUC and LRC-SCUC models where RoCoF related constraints are 

implemented. Note that the total system synchronous inertia of the proposed LRC-

SCUC model is the highest among all three models, which reflects the impact of 

imposing locational RoCoF constraints. 

 

Fig. 4.7 Impact of RoCoF constraints on the total system inertia. 

              Some other insightful conclusions can also be drawn from Fig. 4.7. When net 

load decreases dramatically between hours 7-13 due to the increase of RES generation, 

the system aggregate inertia in T-SCUC case drops significantly subsequently, 

contingency happens in this time interval may lead to larger frequency deviation and 
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higher RoCoF. While system inertia maintains relatively high level in two other cases 

indicating mitigated RoCoF and frequency deviations.  

              Furthermore, we investigate how commitment scheduling impacts the system 

frequency dynamics following 𝐺 − 1 contingency [97]. The worst-case contingency is 

assumed to take place in peak hour 12, time-domain simulations are then conducted 

for all three models on Transient Security Analysis Tools (TSAT) following the loss 

of largest generator. The detailed model is utilized in this work, and dynamic values 

are selected within appropriate ranges.  

 

Fig. 4.8 System frequency response after loss of the generator with the largest  

generation at hour 12. 

              Results are plotted in Fig. 4.8 comparing the frequency dynamics for ERC-

SCUCU and LRC-SCUC. In T-SCUC model without any RoCoF related constraints, 

loss of the largest committed generation of 400 MW on bus 22 leads to an extremely 

large frequency excursion at 54.1 Hz. For ERC-SCUC, loss of largest generation at 
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182.9 MW on bus 22 result in a frequency nadir at 58.9 Hz which is below the 

threshold of 59.3 Hz. The potential largest 𝐺 − 1 contingency level for LRC-SCUC is 

reduced to 155 MW, which is about 5% of largest demand.  The system frequency is 

maintained above the threshold. Results indicate that the proposed LRC-SCUC model 

would help following primary frequency response, thus subsequently protect against 

the worst-case contingency risk.  

 

(a) ERC-SCUC model 

 

 (b) LRC-SCUC model. 

Fig. 4.9 RoCoF of all buses following the loss of largest generation in different cases. 
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              Fig. 4.9 compares the average RoCoF over a period of 100 ms on generator 

buses for ERC-SCUC and LRC-SCUC models following the worst-case contingency. 

For the T-SCUC results, the RoCoF on all buses violate the prescribed limit easily by 

a large margin especially in time interval from 9h to 16h. For ERC-SCUC model, the 

highest RoCoF derived from COI frequency can be numerically calculated as -0.50 

Hz/s which is above the required value. However, the highest locational RoCoF still 

violates the prescribed RoCoF limit which reflects that impact of oscillations cannot 

be handled well by ERC-SCUC model. For the generator commitment and dispatch 

solution obtained from the proposed LRC-SCUC model, the lowest locational RoCoF 

is maintained above -0.5 Hz/s, meeting the RoCoF security requirement. It also can be 

observed that initial RoCoF may not be the lowest RoCoF within the oscillation 

period, imposing multiple measurement windows can help us capture highest RoCoF. 

The results indicate the effectiveness and necessity to incorporate locational RoCoF 

constraints into the scheduling model.   

              The results of three models are summarized in Table 4.2. Imposing system 

equivalent model based RoCoF constraints leads to a 10.90% increase in total system 

cost, the total generation cost increases from $891,391 to $988,524. In the presence of 

location based RoCoF constraints, an increase of 17.90% in total operational cost is 

observed. On the other hand, the reserve cost decreases significantly as the worst-case 

contingency level mitigated. Meanwhile, additional synchronous machines are 

committed to cover the shortage of inertia to limit locational RoCoF following the loss 

of largest generation, which accordingly increases the operation cost as well as the 
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start-up cost. 

Table 4.2 SCUC Costs [$] under Different Models 

Model  Total Start-up Operation  Reserves  

T-SCUC 891,391 56,704 744,973 89,714 

ERC-SCUC 988,524 59,462 881,633 47,429 

LRC-SCUC 1,050,989 66,810 955,983 28,196 

 

Fig. 4.10 Impact of RoCoF constraints on the average unit inertia contribution. 

              Furthermore, average unit inertia (AUI) of committed generators is compared 

in Fig. 4.10 over the whole dispatching horizon. A noticeable large value of AUI 

between hours 1-5 and hour 16-18 are monitored in T-SCUC and ERC-SCUC cases. 

Larger AUI indicates that generators of larger rated power and synchronous inertia are 

scheduled in the system operation, implying potential larger worst-case contingency 
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level. As shown, the AUI of proposed LRC-SCUC case is relatively stable during the 

whole horizon. To achieve the energy system with more RES penetration level, re-

dispatching existing generators provides options that can help mitigate the frequency 

deviation and RoCoF violations. 

4.6.4 Impact of Synchronous Generator Inflexibility 

              Conventional generator may take hours to start up again after it shuts down 

and shut down after it is turned on, which is known as generator minimum ON/OFF 

time limit constraint; such synchronous generator inflexibility may not be neglected. 

Thus, this section investigates how such inflexibility affects the performance of 

proposed LRC-SCUC model. 

              Combining the results shown in Fig. 4.11 and Fig. 4.12, we can conclude that 

the proposed LRC-SCUC model outperforms ERC-SCUC and T-SCUC. For ERC-

SCUC model, the highest locational RoCoF violates the prescribed RoCoF limit. It 

could be inferred that initial RoCoF should not be assumed as highest value, and only 

imposing system equivalent RoCoF constraint cannot secure locational RoCoF 

stability. The proposed LRC-SCUC model maintains the lowest locational RoCoF 

above -0.5 Hz/s, and achieves less conservative results when generator min ON/OFF 

time is considered. It indicates the impact of generators inflexibility would not degrade 

the conclusion of this paper. Since we focused on the RoCoF stability of system with 

high RES penetration level, the generator min ON/OFF time limit is not enforced in 

other parts of this paper. 
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Fig 4.11 Impact of RoCoF constraints on the total system inertia when generator 

minimum ON/OFF time limits are enforced in SCUC. 

     

(a) ERC-SCUC model.            
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 (b) LRC-SCUC model. 

Fig 4.12 RoCoF of all buses following the loss of largest generation in different cases  

with generator minimum ON/OFF time constraints.     

4.6.5 Sensitivity Analysis on RES Penetration Levels 

              The sensitivity analysis with different renewable penetration levels is 

conducted in this subsection. Following the daily load profile shown in Fig. 4.3, four 

scenarios are considered for different RES penetration levels during peak hour from 

20% to 80% with an increment of 20%. Given the system peak load is 3,222 MW at 

hour 12, the corresponding RES generations during peak hour are 644.4 MW, 1,288.8 

MW, 1,933.2 MW and 2,577.6 MW respectively. 

              Table 4.3 presents the aggregated system inertia value at peak hour 12 in 

different scenarios. As RES penetration level increases from 20% to 80%, the 
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synchronous inertia of committed synchronous generators based on T-SCUC drops 

significantly comparing to the LRC-SCUC model.  

Table 4.3 System Inertia [MWs] under Different Models 

RES Penetration 

Level 
20% 40% 60% 80% 

T-SCUC  11,706 10,434 9,342 7,792 

ERC-SCUC 14,639 13,063 12,275 10,880 

LRC-SCUC 15,599 14,503 13,235 13,095 

Table 4.4 Highest ROCOF [Hz/s] under Different Scenarios 

RES Penetration Level 20% 40% 60% 80% 

T-SCUC  -1.26 -1.32 -1.45 -1.65 

ERC-SCUC -0.75 -0.66 -0.63 -0.62 

LRC-SCUC -0.34 -0.38 -0.42 -0.46 

 

Fig. 4.13 RoCoF violation gaps for different scenarios. 
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              One may be interested to compare the nodal frequency performance of all 

three SCUC models. Simulations have been conducted in TSAT considering worst-

case contingency happens in peak hour 12. Table 4.4 shows the highest RoCoF 

monitored on generator buses following the 𝐺 − 1  contingency under different 

scenarios. It can be observed that highest RoCoF in both ERC-SCUC and T-SCUC 

cases violates the limit which may subsequently trip frequency-sensitive protection 

relays, while the RoCoF is secured above predetermined threshold in all cases with the 

proposed LRC-SCUC model. 

              The RoCoF violation gap which indicates difference between the actual 

values and the thresholds are depicted in Fig. 4.13 [37]. The violation gaps are all 

positive in T-SCUC and REC-SCUC indicating threshold violations. As RES 

penetration level increases, less conservative solutions are observed for LRC-SCUC 

model in this sensitivity test. Understandably, non-uniform distribution caused by 

generator aggregation is relieved because of less generator aggregation.  

Table 4.5 SCUC Costs [$] under Different Scenarios 

RES 

Penetration 

Level 

20% 40% 60% 80% 

T-SCUC  1,357,203 1,077,439 891,391 750,199 

ERC-SCUC 1,459,983 1,181,493 988,524 845,606 

LRC-SCUC 1,546,833 1,253,221 1,050,989 908,353 
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              The costs with those three SCUC models are listed in Table 4.5. Obviously, 

incorporating frequency related RoCoF constraints in SCUC leads to an increase of 

system total generation cost in all scenarios. The change in the cost is dependent on 

the change in penetration level of renewable resources. 

4.6.6 Sensitivity Analysis with PWL Evaluation Points 

              In this section, we compare the proposed method for different evaluation 

points in terms of computational time and frequency dynamics. Results in Table 4.6 

show that more evaluation points decrease the operational cost. The fitting time for 3 

evaluation points case is 78.25 s, while it is 165.16 s for 4 evaluation points case. 

Since fitting process is run off-line, the fitting process wouldn’t affect the efficiency 

the proposed model. It can be observed that computational time for solving proposed 

LRC-SCUC problem is close for both cases. 

Table 4.6 SCUC Results with Different PWL Evaluation Points 

PWL 
Operational Cost 

[$] 

Computational Time 

[s] 

Fitting Time 

[s] 

𝜂 = 3, 𝑣 = 4 1,050,989 75.45 78.25 

𝜂 = 4, 𝑣 = 4 1,042,346 77.95 165.16 

              Dynamic simulation of 4 evaluation points case is conducted on TSAT. From 

Fig. 4.14 we can observe that the highest RoCoF for 4 evaluation points case is -0.49 

Hz/s, implying that solution of the model considering 4 evaluation points is less 

conservative comparing to the case with 3 evaluation points (-0.42 Hz/s). The 
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proposed LRC-SCUC model with 4 evaluation points takes slightly more time at least 

for this test case, providing a less conservative solution. 

 

Fig. 4.14 RoCoF evolution of 4 evaluation points case. 

4.6.7 Influence of Virtual Inertia on Market Results 

              In this subsection, the proposed VI-LRC-SCUC model that considers virtual 

inertia Mt
VI is implemented and the effects of virtual inertia on day-ahead scheduling 

and system stability are examined. We first consider M𝑡
Total =∞ with no upper limit, 

the cost curves of VI-ERC-SCUC and VI-LRC-SCUC models are depicted in Fig. 

4.15. Results show that introducing virtual inertia would potentially reduce the total 

operational cost of VI-LRC-SCUC model, while cheaper inertia price leads to higher 

reduction value. With inertia price at 0$/MWs, the total operational cost of VI-LRC-

SCUC is equal to the cost of T-SCUC, while it is close to the cost of LRC-SCUC 

when inertia price is over 0.75$/MWs. 
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Fig. 4.15 Operational cost curve. 

 

Fig. 4.16 Cost curve of virtual inertia provision. 

              The cost curve of virtual inertia provision has been depicted in Fig. 4.16. As 

can be seen, VI-LRC-SCUC is more sensitive to price change of virtual inertia than 

VI-LRC-SCUC model. The results also indicate that cheaper inertia price doesn’t 

increase the value of needed virtual inertia in both cases. When virtual inertia price 

increase above 0.5$/MWs, the virtual inertia purchased by the system would decrease 
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to zero, that means system would rather turn on conventional synchronous generators 

than purchasing additional virtual inertia. 

              Accounting for the available capacity and the total cost of the inertia-

emulating devices, there is a total budget constraint for additional virtual inertia [31], 

the total available virtual inertia M𝑡
Total is considered as 2,000 MWs. To evaluate the 

influence of including virtual inertia based RoCoF constraints in SCUC models, we 

analyze the average market results of five models over 24 hours.  

Table 4.7 Average LMP with Different SCUC Models 

Model  
Average LMP 

[$/MWh] 

Average congestion 

LMP [$/MWh] 

Energy LMP 

[$/MWh] 

T-SCUC 37.56 23.31 14.25 

ERC-SCUC 41.44 24.20 17.24 

VI-ERC-SCUC 40.41 23.17 17.24 

LRC-SCUC 45.89 29.09 16.80 

VI-LRC-SCUC 37.88 21.08 16.80 

              As defined in (4.48), system average locational market price (LMP) over the 

entire scheduling horizon is proposed to investigate the impact of introducing 

additional inertia in SCUC on system LMP. Similarly, system average congestion 

LMP is defined in (4.49), 

  
𝐴𝑣𝑔𝐿𝑀𝑃 =

1

‖𝑇‖ ∙ ‖𝑁‖
∑ ∑ 𝐿𝑀𝑃𝑛,𝑡

𝑛𝜖𝑁𝑡𝜖𝑇

,        ∀n, t, (4.49) 

  
𝐴𝑣𝑔𝐿𝑀𝑃𝑐𝑔 =

1

‖𝑇‖ ∙ ‖𝑁‖
∑ ∑ 𝐿𝑀𝑃𝑐𝑔,𝑛,𝑡

𝑛𝜖𝑁𝑡𝜖𝑇

,        ∀n, t. 
(4.50) 
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              The nodal LMP energy component and congestion component results are 

presented in Table 4.7. With virtual inertia implemented, the system average LMP and 

congestion LMP over the scheduling horizon are close for both ERC-SCUC and VI-

ERC-SCUC cases. In proposed LRC-SCUC cases, system average congestion LMP 

decreases from 29.09 $/MWh to 21.08 $/MWh when virtual inertia is included, and 

the average LMP value decreases accordingly from 45.89 $/MWh to 37.88 $/MWh. 

This result reflects that imposing virtual inertia can significantly reduce the system 

average LMP and could be an option that guarantees RoCoF security while avoiding 

high congestion. 

Table 4.8 Average Market Results with Different SCUC Models 

Model 

Load 

payment 

[$/h] 

Generator 

revenue 

[$/h] 

Generator 

cost [$/h] 

Generator 

rent [$/h] 

Congestion 

revenue 

[$/h] 

T-SCUC 80,476 72,589 37,141 35,448 7,887 

ERC-SCUC 82,975 59,651 41,189 18,462 23,324 

VI-ERC-

SCUC 
83,202 62,005 40,475 21,530 21,197 

LRC-SCUC 127,770 52,882 43,791 9,091 74,888 

VI-LRC-

SCUC 
81,112 61,827 43,315 18,512 19,285 

              Table 4.8 details the market results of all cases based on the nodal LMP over 

the scheduling horizon, and the definitions of the indexes in this table are adapted 

from [98]. Results show that the congestion revenue is relatively low for both T-

SCUC and ERC-SCUC comparing to the proposed LRC-SCUC model. Significant 
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reduction can be observed in both average congestion and load payment when 

additional inertia is introduced. Moreover, it is interesting to observe although VI-

ERC-SCUC achieves a lower cost than ERC-SCUC, its load payment is even higher. 

In general, simulation results reflect that introducing virtual inertia could be a cost-

effective approach. Such action enables generation flexibility of generators which 

might be strictly constrained by frequency related constraints, subsequently lowering 

the burden of transmission lines and reducing the network congestion. 

              Note that the metrics averaged over the entire scheduling horizon presented in 

Tables VII&VIII reflect a positive impact of virtual inertia on power system 

economics. Inertia service pricing mechanism for pricing and payment of inertia for all 

participating units requires further deep investigation 

4.7 Summary 

              In this chapter, the concept of locational frequency security is introduced. We 

first investigate the impact of Fiedler mode on locational frequency dynamics, and 

then the expression of locational frequency dynamics is defined accounting for G-1 

contingency in multi-machine systems. To capture the highest locational RoCoF 

during the oscillation, a multiple-measurement-window method is introduced. 

Furthermore, a piecewise linearization based method is then proposed to convert the 

non-linear frequency constraints into linear frequency constraints in the proposed 

LRC-SCUC model, which allows us to optimally schedule the synchronous inertia as 

well as inertial services provided by non-synchronous resources to meet the minimum 

system inertia requirement for power systems with higher RES integration.  
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              Simulation results show that imposing location based RoCoF constraints in 

the SCUC model can ensure the locational frequency security during worst-case 

contingency event. Such RoCoF-related constraints also significantly affect the 

scheduling of synchronous generators and consequently the expected system cost. The 

effect of virtual inertia on inertia pricing and market efficient is examined, results 

imply that introducing virtual inertia can reduce the total cost by avoiding starting up 

unnecessary commitment of extra expensive synchronous generators. Compared to 

VI-ERC-SCUC model, VI-LRC-SCUCU is more sensitive to inertia price.  
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5. DEEP LEARNING BASED RCUC 

5.1 Literature Review 

              The operation of the power system in the short term is a multifaceted process 

that commences with day-ahead markets, where the schedules of generators are 

determined to minimize operational costs. In this stage, unit commitment is employed 

as an optimization problem to meet the anticipated supply and demand for the 

following day. The day-ahead market plays a crucial role in scheduling and 

committing a significant portion of the demand, making it an essential step in power 

system operations. Given that the optimization problem includes variables and 

constraints related to the on/off status of generators, it becomes a mixed-integer linear 

program (MILP). 

              With the increased penetration of renewable energy sources (RES), 

maintaining power system frequency stability has become a great challenge for 

reliable system operations [99]. Traditionally, synchronous generators play an 

important role in regulating frequency excursion and rate of change of frequency 

(RoCoF) after a disturbance as it ensures slower frequency dynamics. Due to the 

retirement and replacement of conventional generation, more generation is coming 

from converter-based resources such as wind and solar power. Consequently, the 

system kinetic energy decreases significantly, leaving the system more vulnerable to 

large variations in load or generation [100]. When RoCoF violates the necessary 

industrial control and operation standards, protection devices would disconnect 

generators from the grid. Insufficient inertia exacerbates the need for fast frequency 
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response services to secure frequency stability [101].  

              Requirements for adequate frequency control of the electric power system were 

suggested by Federal Energy Regulatory Commission [102]. The Swedish TSO 

ordered the Oskarshamn Kraftgrupp to reduce its nuclear power output by 100 MW to 

mitigate the risk of loss of the power plant in Sweden [103]. Transmission system 

operators (TSOs) have also suggested to impose extra RoCoF related constraints in the 

conventional unit commitment (UC) model to keep the minimum amount of 

synchronous inertia online.  

              Model-based approaches utilize the swing equation with a piecewise linear 

mechanical power approximation to analyze the system dynamics, and different 

versions of RoCoF security conditions can be derived and embedded into the 

optimization formulation. Several papers have included frequency related constraints 

into traditional security-constrained unit commitment (SCUC) formulations. In [104], 

uniform frequency response model was extended by including converter-based 

control, and constraints on RoCoF are then derived and incorporated into SCUC 

formulations. However, these approaches oversimplify the problem as they neglect 

nodal frequency dynamics, and the actual need for frequency ancillary services would 

be underestimated. Ref. [105] considers the geographical discrepancies and 

connectivity impacts on nodal frequency dynamics. Results show that model-based 

approaches may fail to handle higher order characteristics and nonlinearities in system 

frequency response, approximation in model may also introduce extra errors into the 

derived constraints, resulting in conservative solutions.  
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              Neural network-based techniques have demonstrated the ability to capture 

and track system frequency dynamics and associated conditions, thereby improving 

the performance of conventional SCUC problems. The availability of reliable data and 

appropriate models for training is a crucial aspect for deep learning (DL) methods to 

yield high-quality results. Given that the SCUC is performed on a daily basis, 

historical data can be effectively utilized to learn non-linear correlations between input 

variables and corresponding outputs. DL has been successfully utilized in the 

prediction or decision support in complex problems in various power system fields 

[106]–[109]. A Classification decision tree for frequency security was designed in 

[110] for traditional unit commitment formulation. A pioneering data-driven approach 

has been proposed in [111], which incorporates neural network-based constraints 

against the worst-case contingency into formulations. The overview of the data driven 

RCUC is described in the following sections using the working pipeline shown in Fig. 

5.1. 
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Fig. 5.1 Overview of the data driven RCUC framework. 

5.2 System Uniform and Dynamic Models 

              The frequency of the power system is one of the most important metrics that 

indicate the system stability. Uniform frequency models are often used in power 

system studies and analyses, especially for steady-state and simplified calculations. 

Traditionally, the frequency is treated as unique of the whole system. In these models, 

0.the frequency is typically assumed to be equal at all buses or nodes in the power 

system. The rotating inertia of a synchronous generator is equal to the stored energy 

Ei in the rotors of the machine at nominal speed. The rotational inertia of a single shaft 

is commonly defined using its inertia constant and the rated apparent power [112].  

For a single machine, the inertia constant is expressed as follows, 
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𝐻𝑖  =  
𝐽𝑖𝜔𝑖

2

2𝑆𝐵𝑖

, (5.1) 

where 𝐻𝑖 is the inertia constant of the generator in seconds; J𝑖 is the moment of inertia 

of the shaft in kg∙m2s; S𝐵𝑖
 is the base power in MVA; and 𝜔𝑖 is the nominal rotational 

speed instead of the actual speed of the machine.  

              Power system inertia is defined as the total amount of rotational energy stored 

in all rotating synchronous units; dynamics of these generators’ rotors are directly 

coupled with the grid electrical dynamics. It can be expressed as follows. For a single 

generator 𝑖, the swing equation is expressed as, 

𝑑𝜔𝑖

𝑑𝑡
 =  

𝑃𝑚 − 𝑃𝑙𝑜𝑎𝑑

2𝐻𝑖𝑆𝐵𝑖

𝜔𝑛, (5.2) 

where 𝑃𝑚 is the mechanical power and 𝑃𝑙𝑜𝑎𝑑 is the load from the power system, while 

𝜔n is the rated steady state frequency of the system. d𝜔i/dt is more commonly known 

as RoCoF. The swing equation of the system equivalent model can be then applied to 

the whole grid [113]. After a disturbance of power mismatch occurrence, the system 

RoCoF related to the total system inertia can be defined as, 

𝑅𝐸𝑡0  =  
−∆𝑃

2𝐻𝑠𝑦𝑠𝑆𝐵
𝜔𝑛, (5.3) 

where ∆𝑃 is the sudden change in active power in MW at t=𝑡0.              

              However, it is important to note that uniform frequency models have 

limitations and may not accurately capture the actual frequency response of a power 

system during transient or dynamic events. They do not consider the effects of system 

inertia, generator dynamics, and frequency control mechanisms that impact frequency 
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deviations and response. For more accurate and detailed analysis, especially in 

scenarios involving significant renewable energy integration or system disturbances, 

more sophisticated and non-uniform frequency models that account for dynamic 

effects and control actions are required. Following a sudden change in load or a 

generation contingency, the dynamic model (5.4) is used to describe the evolution of 

system level frequency deviation following the maximum infeed generation loss ∆�̅�, 

 ∆�̅� = 𝑀
𝜕∆𝜔

𝜕𝑡
+ 𝐷∆𝜔,  (5.4) 

where 𝑀𝑠𝑦𝑠  and 𝐷𝑠𝑦𝑠  are the aggregated system inertia constant and damping 

coefficient corresponding to the committed synchronous generators respectively. 

However, only considering the dynamics of the equivalent model in systems would 

underestimate the actual need for frequency ancillary services, leading to higher 

locational RoCoF and larger regional frequency deviation than expected. 

              Using the topological information and the system parameters, the 

transmission network can be modeled as a graph consisting of nodes (buses) and edges 

(branches). The oscillatory behavior of each individual bus can be expressed as 

follows, 

𝑚𝑖�̈�𝑖 + 𝑑𝑖�̇�𝑖  =  𝑃𝑖𝑛,𝑖 −  𝑃𝑒,𝑖, 𝑖 ∈ 𝑁𝐺 . (5.5) 

              Note that the dynamic model describes the frequency evolution on generator 

buses, we assumed instantaneous and reliable measurements of frequency and related 

response are triggered about 100 ms after the fault and they have minor effect on the 

initial RoCoF values. 
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5.3 DNN based RCUC Model 

5.3.1 DNN based RoCoF Prediction 

              Prediction of the highest nodal RoCoF is quite challenging due to the non-

linear nature of the power system. Although efforts like [96] improve the frequency 

dynamics model by including the state-of-the-art converter control schemes, model-

based approaches are unable to capture the entire characteristics and incorporate high-

order models. DNN has shown the ability to amend the limitations of model-based 

approaches [111]. 

              Given the load forecast 𝑑 and RES forecast 𝑟, following a disturbance 𝜛𝜏 at 

period 𝜏 , the highest locational RoCoF value of the system 𝑅h  is a function with 

respect to the disturbance level, disturbance location, system states, dispatch command, 

load condition and RES profile, 

 𝑅ℎ = ℎ𝑟(𝑠𝜏, 𝑢𝜏, 𝑑𝜏, 𝑟𝜏, 𝜛𝜏), (5.6) 

where 𝑠𝜏  denotes the system states, and 𝑢𝜏 is the generation dispatch at period 𝜏 . 

Compared to the case of a sudden load increase, the loss of generation not only causes 

mismatch in system power balance but also degrades the system synchronous inertia, 

resulting in even higher frequency deviation and larger initial RoCoF. Based on our 

discussion regarding the impact of Fiedler mode on inertial response, disturbance 𝜛𝜏 

is defined to be the G-1 contingency, the magnitude of event is determined by the 

generator output power. The DNN based RoCoF predictor for ℎ𝑟 is then expressed as, 

 �̂�ℎ = ℎ̂𝑟(𝑥,𝑊, 𝑏), (5.7) 
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where 𝑥 is the feature vector, and 𝑊 and 𝑏 denote the parameters of a well-trained 

DNN. Within the transient time period following a disturbance, the characteristics of 

all generators are assumed unchanged, thus, it is sufficient to select the status of each 

SG as input features. Both the magnitude and location of the disturbance will affect 

the inertial response. The generator status feature vector for sample s is defined as 

follows, 

 u𝑠 = [u1,𝑠, u2,𝑠, ⋯ , u𝑁𝐺,𝑠]. (5.8) 

The disturbance feature vector is defined against the loss of largest generation, the 

magnitude is expressed as, 

𝑃𝑠
𝜛 = 𝑚𝑎𝑥

𝑔∈𝐺
(𝑃1,𝑠, ⋯ , 𝑃2,𝑠, ⋯ , 𝑃𝑁𝐺,𝑠). (5.9) 

The location of the disturbance is then represented by the index of the generator, 

𝑔𝑠
𝜛 = 𝑎𝑟𝑔 𝑚𝑎𝑥

𝑔∈𝐺
(𝑃1,𝑠, ⋯ , 𝑃2,𝑠, ⋯ , 𝑃𝑁𝐺,𝑠). (5.10) 

We encode the information of magnitude and location into the disturbance feature 

vector as, 

𝜛𝑠
𝐺 = [0,⋯ ,0, 𝑃𝑠

𝜛⏟
𝑔𝑠

𝜛𝑡ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

, 0,⋯ ,0]. (5.11) 

              Laplacian matrix L of the grid and Fiedler mode value depend on the power-

angle characteristics, which are determined by the active power injection. Thus, the 

active power injection of all SGs will be encoded into the feature vector,  

𝑃𝑠 = [𝑃1,𝑠, ⋯ , 𝑃2,𝑠, ⋯ , 𝑃𝑁𝐺,𝑠]. (5.12) 

The overall feature vector of a sample 𝑠 can be then defined as follows, 
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𝑥𝑠 = [𝑢𝑠, 𝜛𝑠
𝐺 , 𝑃𝑠]. (5.13) 

              Now consider a fully connected neural network with 𝑁𝐿 hidden layer. Each 

layer uses a ReLU activation function as 𝜎(∙) = 𝑚𝑎𝑥 (∙, 0) and the output layer is a 

linear activation function. The predicted RoCoF can be expressed as follows, 

𝑧1 = 𝑥𝑠𝑊1 + 𝑏1, (5.14) 

�̂�𝑞 = 𝑧𝑞−1𝑊𝑞 + 𝑏𝑞 , (5.15) 

𝑧𝑞 = max(�̂�𝑞 , 0), (5.16) 

𝑅h,s = 𝑧𝑁𝐿
𝑊𝑁𝐿+1 + 𝑏𝑁𝐿+1, (5.17) 

where 𝑊𝑞 and 𝑏𝑞 represent the weight and bias for the 𝑚-th hidden layer, and 𝑊𝑁𝐿+1 

and 𝑏𝑁𝐿+1 represent the set of weight and bias of the output layer.  

5.3.2 Model based Data Generation 

              Training samples are generated from models over various load and RES 

scenarios, T-SCUC models and frequency constrained SCUC models are implemented 

in this process. Given the load forecast and RES forecast, the T-SCUC is the base 

model generating dispatching samples. Objective function is to minimize the total 

system cost consisting of variable fuel costs, no-load costs, start-up costs, and reserve 

costs.  

              As mentioned before, two RoCoF constrained SCUC models are utilized. It is 

worth pointing out that the primary response is neglected in the formulation, without 

affecting the inertial response and the fundamental findings of this work.  For system 

equivalent model based ERC-SCUC model, constraint (5.18) is introduced to 
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guarantee generator frequency stability considering the relative location to the 

potential G − 1 contingency, 

 𝑅𝐸𝑡0(∆𝑃,𝐻𝑠𝑦𝑠, 𝑆𝐵 ) ≤ −𝑅𝑜𝐶𝑜𝐹𝑙𝑖𝑚,     ∀𝑔, 𝑡. (5.18) 

              LRC-SCUC introduces locational RoCoF constraints based on the definition 

of local buses Nloc and non-local buses 𝑁𝑛−𝑙𝑜𝑐. Constraints (5.19) and (5.20) ensure 

system stability by imposing limit on locational RoCoF over all buses under all 𝐺 − 1 

contingency, 

 𝑅𝑛
𝑇1(∆𝑃,𝐻𝑠𝑦𝑠, 𝑆𝐵) ≤  −𝑅𝑜𝐶𝑜𝐹𝑙𝑖𝑚, ∀𝑛 ∈ 𝑁𝑙𝑜𝑐 , 𝑔, 𝑡, (5.19) 

 𝑅𝑛
𝑇2(∆𝑃,𝐻𝑠𝑦𝑠, 𝑆𝐵) ≤  −𝑅𝑜𝐶𝑜𝐹𝑙𝑖𝑚, ∀𝑛 ∈ 𝑁𝑛−𝑙𝑜𝑐 , 𝑔, 𝑡. (5.20) 

              The constraints on RoCoF for locational frequency dynamics are nonlinear. 

In order to incorporate these frequency-related constraints into the proposed LRC-

SCUC model, a linear approximation method is introduced. The detail of all models is 

presented in [105].  

5.3.3 DNN Linearization 

              DNN linearization refers to the process of approximating a deep neural 

network model with a linear model. It involves simplifying the non-linear behavior of 

the DNN model. To encode the neural networks into the MILP SCUC problem, 

decision variables are introduced to build the disturbance feature vector. binary 

variable 𝜆𝑔,𝑡
𝐺  is used to indicate the status of largest output power of generator 𝑔  in 

scheduling period 𝑡, a big-M method is introduced to express the disturbance vector, 

   𝑃𝜌,𝑡 −  𝑃𝑔,𝑡 ≤ 𝑀(1 − 𝜆𝑔,𝑡
𝐺 ) , ∀𝜌, 𝑔, 𝑡,  (5.21) 
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  ∑ 𝜆𝑔,𝑡
𝐺

𝑔 ∈𝐺

= 1 ∀𝑡 (5.22) 

where M is a big positive number. Equation (5.21) enforces 𝜆𝑔,𝑡
𝐺  to be zero is the 

dispatched output power of other generators 𝜌 is larger than generator g at period t, 

while (5.22) limit the number of potential largest generator to be one at one period. 

When generator g has the largest output power, (5.23) and (5.24) would set the status 

of largest output power 𝜆𝑔,𝑡
𝐺  to be 1. To express the magnitude of disturbance, variable 

 ε𝑔,t is defined as the indicators of disturbance,  

 ε𝑔,t −  Pg,t ≥ −𝑀(1 − 𝜆𝑔,𝑡
𝐺 ), ∀g,t, (5.23) 

 ε𝑔,t −  Pg,t ≤ 𝑀(1 − 𝜆𝑔,𝑡
𝐺 ), ∀g,t, (5.24) 

0 ≤  ε𝑔,t ≤ 𝑀𝜆𝑔,𝑡
𝐺 , ∀g,t. (5.25) 

Thus, the input feature vector can be expressed as follows, 

𝑥𝑡 = [𝑢1,𝑡, ⋯ , 𝑢𝑁𝐺,𝑡,  휀𝑔,𝑡, ⋯ ,  휀𝑁𝐺,𝑡, 𝑃1,𝑠, ⋯ , 𝑃𝑁𝐺,𝑠]. (5.26) 

              Since ReLU activation functions are nonlinear, to include the DNN into the 

MILP, binary variables 𝑎𝑞[𝑙] are introduced which represent the activation status of the 

ReLU unit at 𝑙 th neuron of 𝑞 th layer. For a given sample 𝑠  , consider 𝐴  is a big 

number that is larger than the absolute value of all �̂�𝑞[𝑙],𝑠. When preactivated value 

�̂�𝑞[𝑙],𝑠 is larger than zero, constraints (5.27) and (5.28) will force binary variable 𝑎𝑞[𝑙],𝑠 

to one, and the activated value will be equal to �̂�𝑞[𝑙],𝑠. When �̂�𝑞[𝑙],𝑠 is less than or equal 

to zero, constraints (5.29) and (5.31) will force binary variable 𝑎𝑞[𝑙],𝑠  to zero. 

Subsequently, the activated value 𝑧𝑞[𝑙],𝑠 will be set zero,  
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𝑧𝑞[𝑙],𝑠 ≤ �̂�𝑞[𝑙],𝑠 + 𝐴(1 − 𝑎𝑞[𝑙],𝑠), ∀𝑞, ∀𝑙, ∀𝑠, (5.27) 

𝑧𝑞[𝑙],𝑠 ≥ �̂�𝑞[𝑙],𝑠, ∀𝑞, ∀𝑙, ∀𝑠, (5.28) 

𝑧𝑞[𝑙],𝑠 ≤ 𝐴𝑎𝑞[𝑙],𝑠, ∀𝑞, ∀𝑙, ∀𝑠, (5.29) 

𝑧𝑞[𝑙],𝑠 ≥ 0, ∀𝑞, ∀𝑙, ∀𝑠, (5.30) 

𝑎𝑞[𝑙],𝑠 ∈ {0, 1}, ∀𝑞, ∀𝑙, ∀𝑠. (5.31) 

5.3.4 Results and Analysis of DNN-RCUC 

              A case study on IEEE 24-bus system is provided to demonstrate the 

effectiveness of the proposed DNN-RCUC methods. This test system contains 24 

buses, 33 generators and 38 lines, which also considers decarbonized generation 

characterized by wind power. The base case has a total demand from 1,195 MW to a 

peak of 2,116 MW. To ensure the practicality of the dataset and the generality of the 

trained model, load profile and RES profile are sampled based on Gaussian 

distribution while the deviation of means value ranges from [-20%, 20%] of the based 

value. The mathematical model-based data generation is operated in Python using 

Pyomo. Regarding post-contingency frequency limits, RoCoF must be higher than -

0.5Hz/s to avoid the tripping of RoCoF-sensitive protection relays, and the optimality 

gap is set to 0.1%. The PSS/E software is used for time domain simulation and 

labeling process, and full-scale models with detailed generator dynamics are 

implemented for more realistic data.  
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5.3.4.1  DNN Predictor Training 

              The base vector has a dimension of 99. For the DNN layers, the number of 

neurons is set 10 for each layer. ReLU is used as the activation function. The 

architecture of proposed DNN model is showed in Fig. 5.2.  

 

Fig. 5.2 Architecture of proposed DNN model. 



119 

 

              The training was operated in batches of 32 data points. An MSE based 

dynamic learning rate strategy is used for the training. Learning rate schedule is 

applied in the training process by reducing the learning rate accordingly, the factor by 

which the learning rate will be reduced is set to 0.5 and the patience value is set to 10 

epochs. A total of 9,600 samples were collected based on strategies proposed in 

previous section. The entire dataset is divided into two subsets: 7,680 samples (80%) 

for training and 1,920 samples (20%) for validation. 

              Table 5.3 shows the validation accuracy of the RoCoF predictor under 

different tolerances. The validation accuracy is 99.27% with 10% tolerance, implying 

high performance of the trained model. It should be noted that the accuracy is still 

above 93.55% even with a small tolerance of 5%, indicating the robustness of the 

trained predictor. 

Table 5.1 Validation Accuracy of the proposed DNN-based ROCOF Predictor 

Tolerance  10% 9% 8%  7%  6% 5% 

Accuracy 99.3% 99.0% 98.5% 96.6% 95.5% 93.6% 

5.3.4.2  DNN-RCUC Simulation Results 

              The forecast load and wind power for test case are plotted in Fig. 5.3 and Fig. 

5.4. Due to the computational efficiency, one interval in the simulation process 

represents 4 hours in periods. The test case has a demand ranging from 1,633 MW to a 

peak of 1,853 MW. The peak wind generation is 266 MW. All three RoCoF-

constrained models are tested on the same test case. 
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Fig. 5.3 Load profile of the IEEE 24-bus system. 

 

Fig. 5.4 Wind generation of the IEEE 24-bus system. 

Table 5.1 SCUC Costs [$] Of Different Models 

Model  Total Start-up Operation  Reserves  

ERC-SCUC 540,128 28,536 443,304 68,288 

LRC-SCUC 732,864 40,372 645,884 46,608 

DNN-RCUC 1,093,175 48,101 1,033,759 45,260 
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              Table 5.2 compares the unit commitment results of the proposed DNN-based 

RCUC model and the two mathematical-based SCUC models. It can be observed that 

the proposed DNN-RCUC has the highest operational cost among all three models; the 

extra cost results from the efforts in handling the generator aggregation situations, 

which would be discussed later. On the other hand, the reserve cost is less in LRC-

SCUC and DNN-RCUC models. For DNN-RCUC case, the total reserve cost is 

$46,608, which is slightly lower than the cost of LRC-SCUC model. Additional 

synchronous machines are committed to cover the loss of largest generation for DNN-

RCUC model, which accordingly increases the operation cost as well as the start-up 

cost. 

              Additionally, we run the dynamic simulation of G-1 contingency for all three 

models when the system netload is the lowest. The loss of largest generation at this 

period is more likely to result in highest RoCoF and largest system deviations due to 

least synchronous generators online. The highest RoCoF of three cases are listed in 

TABLE IV. Although with system equivalent model-based RoCoF constraints, ERC-

SCUC model still cannot ensure system RoCoF security under such situation. The 

highest RoCoF of LRC-SCUC model is 0.3920 Hz/s, which gives a relatively high 

constraints gap at -21.60% below limit. The proposed DNN-RCUC has a highest 

RoCoF of 0.4952 Hz/s following the loss of largest generation. From TABLE III and 

Fig. 5.5, it can be concluded that the proposed DNN-RCUC model can secure the 

system with minimal constraints gap while LRC-SCUC leads to conservative results.  
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Table 5.2  Highest RoCoF of Different Models 

Model  ERC-SCUC LRC-SCUC DNN-RCUC  

Highest RoCoF 

[Hz/s] 
0.6127 0.3920 0.4952 

 

Fig. 5.5 Constraint gaps for different cases. 

Table 5.4 Highest RoCoF of Different Models Considering Generator Aggregations 

Model  LRC-SCUC DNN-RCUC  

Highest RoCoF [Hz/s] 0.8125 0.4993 

              Furthermore, the stability issue of generator aggregation is investigated. In 

this work, we run time domain simulation of two locational RoCoF constrained 

models in the scenario considering the aggregation of generators on bus 23. Following 

the loss of the largest generation at hour 11, the highest RoCoF of two models are 

compared in Table 5.4. It can be observed that in the case of LRC-SCUC model, trip 
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of the largest generation on bus 23 may cause generator on the same event bus violates 

the pre-specified RoCoF limit 0.5 Hz/s easily. When the constraints based on DNN are 

implemented, the system RoCoF can be secured just below the threshold. 

5.4 CNN based RCUC 

5.4.1 CNN based RoCoF Prediction 

              CNN is a well-known deep learning architecture inspired by the natural visual 

perception mechanism of the living creatures [114]. Many methods have been 

developed to overcome the difficulties encountered in training deep CNNs [115]–

[118]. CNNs are widely used in image processing and computer vision tasks, as they 

are effective in capturing spatial patterns and features. Recent advancement of deep 

neural network has realized that CNN has the ability to extract multi-scale localized 

spatial features from the power system and compose them to construct highly 

expressive representations of the input features 𝑥𝑠 , which help improve the 

performance of machined learning assisted SCUC. 

 

Fig. 5.6 Architecture of proposed CNN model (NN-SVG). 
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              The CNN model used in this study is denoted in Fig. 5.6. The proposed 

model consists of two types of layers, namely convolutional and fully connected 

layers. The convolutional layer aim to learn feature representations of the input. The 

convolutional layer is composed of 𝜖 convolutional kernels which are used to compute 

different feature maps. In essence, the neurons within a feature map establish 

connections with neighboring neurons in the preceding layer, forming a receptive field 

for each neuron. This receptive field is a region of influence that affects the neuron's 

input. To generate a new feature map, the input is convolved with a learned kernel and 

then subjected to an element-wise nonlinear activation function on the convolved 

outcomes. It's important to note that in the process of generating each feature map, the 

kernel is utilized across all spatial locations of the input, effectively sharing the same 

kernel weights throughout the entire input volume. The forward propagation equations 

are defined as, 

�̂�𝑖,𝑗,𝜖
𝑞 = 𝑥𝑖,𝑗𝑤𝜖

𝑞 + 𝑏𝜖
𝑞 , (5.32) 

𝑧𝑖,𝑗,𝜖
𝑞 = 𝑚𝑎 𝑥(�̂�𝑖,𝑗,𝜖

𝑞 , 0), (5.33) 

where 𝑤𝜖
𝑞
 and 𝑏𝜖

𝑞
 are the weight vector and bias term of the 𝜖-th filter of the 𝑞-th layer 

respectively, and 𝑥𝑖,𝑗 is the input patch centered at location (𝑖, 𝑗) of the 𝑞-th layer. It 

should be noted that the kernel 𝑤𝜖
𝑞

 that generates the feature map is shared, such 

mechanism can reduce the model complexity and improve the efficiency of the model. 

ReLU is used as the activation function for introducing nonlinearities to CNN. 
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              Before feeding into the fully connected layer, the convolved features should 

be flattened in advance. Denoting the flatten function as 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(∙), for the generated 

feature map 𝑧𝑖,𝑗,𝜖
𝑞

 we have, 

𝑧𝑓𝑢𝑙𝑙 = 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝑧𝑖,𝑗,𝜖
𝐶𝑜𝑛), (5.34) 

𝑧𝑓𝑢𝑙𝑙+1 = 𝑧𝑓𝑢𝑙𝑙𝑊𝑓𝑢𝑙𝑙 + 𝑏𝑓𝑢𝑙𝑙, (5.35) 

𝑅ℎ,𝑠 = 𝑧𝑁𝐿
𝑊𝑁𝐿+1 + 𝑏𝑁𝐿+1, (5.36) 

where 𝐶𝑜𝑛 is the last convolutional layer, 𝑊𝑓𝑢𝑙𝑙  and 𝑏𝑓𝑢𝑙𝑙  represent the weight and 

bias for the fully connected layer. 𝑊𝑁𝐿+1 and 𝑏𝑁𝐿+1 represent the set of weight and 

bias of the output layer. 

5.4.2 CNN Linearization 

              Nonlinearity in CNN cannot be directly handled by MLIP solver. CNN 

linearization is to replace non-linear activation functions, such as ReLU, with linear 

functions. This effectively removes the non-linearities and further incorporated it into 

RCUC model.  In order to include the CNN into the MILP, binary variables 𝑎𝑖,𝑗,𝜖
𝑞

 are 

introduced which represent the activation status of the ReLU unit at 𝑙th neuron of 𝑞th 

layer. For a given sample 𝑠 , consider 𝐴 is a big number that is larger than the absolute 

value of all �̂�𝑖,𝑗,𝜖
𝑞

 generated by kernel 𝜖. When preactivated value �̂�𝑖,𝑗,𝜖
𝑞

 is larger than 

zero, constraints (5.37) and (5.38) will force binary variable 𝑎𝑖,𝑗,𝜖
𝑞

 to one, and the 

activated value will be equal to �̂�𝑖,𝑗,𝜖
𝑞 .  When �̂�𝑖,𝑗,𝜖

𝑞
 is less than or equal to zero, 
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constraints (5.39) and (5.41) will force binary variable 𝑎𝑖,𝑗,𝜖
𝑞

 to zero. Subsequently, the 

activated value 𝑧𝑖,𝑗,𝜖
𝑞

 will be set zero,  

 

 𝑧𝑖,𝑗,𝜖,𝑠
𝑞 ≤ �̂�𝑖,𝑗,𝜖,𝑠

𝑞 + 𝐴(1 − 𝑎𝑖,𝑗,𝜖,𝑠
𝑞 ), ∀𝑞, ∀𝜖, ∀𝑠, (5.37) 

 𝑧𝑖,𝑗,𝜖,𝑠
𝑞 ≥ �̂�𝑖,𝑗,𝜖,𝑠

𝑞 , ∀𝑞, ∀𝜖, ∀𝑠, (5.38) 

 𝑧𝑖,𝑗,𝜖,𝑠
𝑞 ≤ 𝐴𝑎𝑖,𝑗,𝜖,𝑠

𝑞 , ∀𝑞, ∀𝜖, ∀𝑠, (5.39) 

 𝑧𝑖,𝑗,𝜖,𝑠
𝑞

≥ 0, ∀𝑞, ∀𝜖, ∀𝑠, (5.40) 

 𝑎𝑖,𝑗,𝜖,𝑠
𝑞

∈ {0, 1}, ∀𝑞, ∀𝜖, ∀𝑠. (5.41) 

5.4.3 Results Analysis  

              The data creation and verification steps are implemented using Pyomo and 

PSSE. The SCUC model is solved using Gurobi solver. For machine learning step is 

implemented in Python 3.6. A computer with Intel® Xeon(R) W-2295 CPU @ 

3.00GHz, 192 GB of RAM and NVIDIA GeForce RTX 2060, 6GB GPU was utilized.  

Table 5.4 Validation Accuracy of the CNN based RoCoF Predictor 

Tolerance 5% 10%  15% 

DNN 92.78 97.49 98.93 

CNN 93.53 97.96 99.17 

              Several common classification methods are first compared with proposed 

CNN model on the IEEE 24-Bus system data. The proposed CNN based RoCoF 

predictor is compared with benchmark DNN in Table 5.5. The results show that with a 

tolerance of 5%, the proposed CNN model has a validation accuracy of 92.78%. For 

the benchmark DNN model, the validation accuracy with 5% tolerance is calculated as 
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93.53% on the same validation dataset, which is relatively lower than the proposed 

CNN model. Fig. 5.7 presents the evolution of MSE losses on the training and 

validation sets over the training process of the proposed LRCN model.  As can be seen 

MSE decreases as the number of epochs increases. 

 
Fig. 5.7 Learning curve of CNN model. 

              Additionally, we validate performance of CNN predictor using the following 

metrics to demonstrate the prediction accuracy: (1) median absolute error (MED-E), 

(2) mean absolute error (MEA-E), and (3) R2 score. From Table 5.7 we can observe 

that CNN based RoCoF predictor has lower MSE as well as MEA-E, indicating that 

CNN model has a better performance in processing power system data with graphical 

information embedded. 

Table 5.4 Comparison of Different Models 

Model MED-E MEA-E  𝑅2 

DNN 0.0072 0.0039 0.9828 

CNN 0.0055 0.0021 0.9893 
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              IEEE 24-bus system for 24-hour period is used for UC validation. Electricity 

demand ranges from 1,300 MW to a peak of 1,786 MW. The mathematical models are 

implemented in Python using Pyomo and solved with the Gurobi solver, and the 

optimality gap is set to 0.1%. The results presented in Table 5.7 show that the all 

RoCoF constrained SCUC models alleviate the reserve cost over T-SCUC. Especially 

for CNN-RCUC, the reserve cost is reduced from $83,475 to $61,882, giving a 

reduction of 25.87%. An increase in startup cost can also be observed in Table 5.7 

when RoCoF related constraints are applied on period 19, which indicates extra cost is 

introduced due to improvement of generator flexibility. 

Table 5.7 Comparison of Different Models’ Costs [$] 

Model  Total  Operational  Startup  Reserve  

T-SCUC 442,978 336,846 22,657 83,475 

ERC-SCUC 456,045 369,820 23,782 62,443 

LRC-SCUC 456,122 369,084 23,782 62,256 

DNN-RCUC 456,178 370,241 23,782 62,155 

CNN-RCUC 456,294 370,630 23,782 61,882 

 

              We assume the worst-case contingency takes place in period 19, and the 

generator outputting the largest power is tripped. The system uniform RoCoF 

responses of different schedule cases are shown in Fig. 5.8. Fig. 5.8 (a) shows the 

uniform RoCoF response of ERC-SCUC model. With system equivalent RoCoF 

constraints incorporated, the highest RoCoF absolute value of ERC-SCUC is strictly 
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0.5 Hz/s, which satisfies the RoCoF constraint. Fig. 5.8 (b), (c) and (d) show that 

system uniform RoCoF doesn’t violate the threshold in both LRC-SCUC and DNN-

RCUC cases. It should be noted that the proposed CNN-RCUC model has the lowest 

RoCoF value. 

 
Fig. 5.8 Uniform RoCoF curves of different model following worst contingency case. 

              The locational RoCoF dynamics of all models are plotted in Fig. 5.9. 

Combining Fig. 5.8 (a) and Fig. 5.9 (a) we can observe that even though the system 

uniform RoCoF doesn’t violate the threshold when equivalent RoCoF constraint is 

applied, locational RoCoF on several generator buses violate its threshold due to 

oscillations. The ERC-SCUC is insecure as dispatched condition cannot withstand the 

trip of the largest generator, cascaded generator contingency may occur under such 
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condition. From Fig. 5.8 (b) we can find that the highest RoCoF is mitigated for LRC-

SCUC schedule, however it still violates the threshold due to approximation error 

introduced in the system dynamic model and PWL method. For data driven methods, 

Fig. 5.9 (b) and (c) show better RoCoF dynamics. As we can observe, DNN-RCUC 

can mitigate the highest RoCoF to 0.55Hz/s which slightly violate the threshold. The 

highest RoCoF if the proposed CNN-RCUC method is 0.52 Hz/s which outperforms 

all other UC schedules. 

 

Fig. 5.9 Locational RoCoF curves of different model following worst contingency  

case. 
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5.5 Summary 

              This chapter proposes data driven frame works to secure system RoCoF 

securities under UC schedules. Initially we use model-based method to generate 

dataset which covers all conditions. Model-based approaches such as T-SCUC, ERC-

SCUC and LRC-SCUC that enforcing system locational frequency security are 

proposed to efficiently generate realistic data for predictor training. DNN and CNN 

based RoCoF predictors are then constructed to track the highest RoCoF value of low 

inertia power system under worst contingency on the generated dataset.  

              Following this, the trained well RoCoF predictor is reformulated and 

incorporated into the linear SCUC model. A PWL method is applied to linearize the 

ReLU functions on each neuron of the RoCoF predictor. Along with this, a DNN-

RCUC and CNN-RCUC models are proposed to ensure system post contingency 

frequency stability. Several SCUC models namely T-SCUC, ERC-SCUC, LRC-

SCUC, DNN-RCUC and CNN-RCUC are examined on IEEE 24-bus system. 

Simulation results on Pyomo show that the proposed DNN-RCUC and CNN-RCUC 

can reduce the reserve cost while also resulting operational cost increasement.  

              Verifications on PSS/E show that model-based approaches can handle system 

uniform frequency stability under worst contingency, however they all fail to secure 

locational RoCoF stability due to approximation error. And the proposed DNN-RCUC 

and CNN-RCUC models can significantly mitigate the highest system locational 

RoCoF value, securing system frequency stability without conservativeness. 
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6. ACTIVE SPARSE NEURAL NETWORK BASED FCUC 

              The Security-Constrained Unit Commitment (SCUC) problem is a fundamental 

optimization task in power system operation. Its objective is to determine the optimal 

commitment and dispatch of power generating units while satisfying various 

operational and security constraints. The SCUC problem takes into account factors 

such as power demand, generator availability, transmission network limitations, 

reserve requirements, and contingencies. By considering security constraints, SCUC 

ensures that the power system operates reliably under normal and abnormal 

conditions, mitigating the risk of blackouts and maintaining system stability. By 

incorporating DNNs, the SCUC problem can benefit from their ability to capture 

intricate relationships within input data, which traditional optimization algorithms may 

struggle to capture.  

              DNNs can effectively learn complex patterns in power system data, such as 

historical load profiles, generator characteristics, and frequency response. Ref. [119] 

proposes a DNN-RCUC which incorporates DNN-based RoCoF predictor into 

formulations by introducing a set of mixed-integer linear constraints. However, MILP 

makes the problem harder to solve typically for larger systems. Moreover, there are 

several security constraints and physical constraints to adhere with to ensure reliable 

and low-cost solutions. However, DNN can have large group of parameters, leading to 

large model sizes. The computational efficiency of data-driven based approaches has 

not been investigated thoroughly yet. Such data-driven approaches may increase 

computational burden due to dense matrix multiplications [120]. Such data-driven 
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approaches may increase computational burden due to dense matrix multiplications, 

this poses challenges in terms of storage, memory, and computational requirements.. 

On the other hand, reformulation of DNN would also introduce extra group of binary 

variables and further degrade the computational efficiency. Pruning allows for the 

removal of unnecessary parameters, resulting in a more compact model that requires 

fewer computational resources. 

6.1 Overview of Solutions 

6.1.1 Model based Approaches 

              The frequency of the power system is one of the most important metrics that 

indicate the system stability. Traditionally, the frequency of the system is treated as a 

single-bus representation or center of inertia (COI) representation; the total power 

system inertia is considered as the summation of the kinetic energy stored in all 

dispatched generators synchronized with the power system, 

𝐸𝑠𝑦𝑠 = ∑2𝐻𝑖𝑆𝐵𝑖

𝑁

𝑖=1

, (6.1) 

where S𝐵𝑖
 is the generator rated power in MVA and 𝐻𝑖 denotes the inertia constant of 

the generator.  

              Assuming a disturbance in the electrical power, the dynamics between power 

and frequency can be modeled by the swing equation described in (6.2) with H 

denoting the normalized inertia constant and D denoting overall damping constant 

respectively, 
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∆𝑃𝑚 − ∆𝑃𝐿 = 2𝐻
𝑑∆𝜔

𝑑𝑡
+ 𝐷∆𝜔, (6.2) 

where ∆𝑃𝑚 is the total change in mechanical power and ∆𝑃𝐿 is the total non-frequency 

sensitive change, and 𝐷∆𝜔  is the frequency-sensitive load change. 𝑑∆𝜔/𝑑t  is 

commonly known as RoCoF. During a short period of time following a disturbance, 

we can derive the constraints on initial RoCoF used for system uniform model, 

𝑓𝑟𝑐𝑓 =
∆𝑃

2𝐻𝑆𝐵
𝜔𝑛 ≤ −𝑅𝑜𝐶𝑜𝐹𝑙𝑖𝑚. (6.3) 

              However only considering system uniform metrics neglects the geographical 

discrepancies in locational frequency dynamics on each bus, which has imposed risks 

on power system stability. Dynamic model is preferred in modern power system for 

frequency oscillation analysis. The topological information and system parameters can 

be embedded into the model by using swing equation on each individual bus to 

describe the oscillatory behavior within the system. A network-reduced model with N 

generator buses can be obtained by eliminating passive load buses via Kron reduction. 

By focusing on the network connectivity’s impact on the power system nodal 

dynamics, the phase angle θ of generator buses can be expressed by the following 

dynamic equation,  

𝑀�̈�  +  𝐷 �̇�  =  𝑃𝑖𝑛 − 𝐿 𝜃,      (6.4) 

Following a loss of generator on bus 𝑏, the steady state evolves under (6.4) can be 

derived. And the RoCoF value at bus 𝑖 can then be expressed as, 
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 𝑓𝑟𝑐𝑓,𝑖(𝑡0) =
∆𝑃𝑒

−
𝛾𝑡
2

2𝜋𝑚
∑

𝛽𝛼𝑖𝛽𝛼𝑏

√𝜆𝛼
𝑚

−
𝛾2

4
∆𝑡

[
 
 
 
 𝑒−

𝛾∆𝑡

2 𝑠𝑖𝑛 (√
𝜆𝛼

𝑚
−

𝛾2

4
(𝑡0 + ∆𝑡))

− 𝑠𝑖𝑛 (√
𝜆𝛼

𝑚
−

𝛾2

4
𝑡0)

]
 
 
 
 

𝑁𝑔

𝛼=1 ,  (6.5) 

where 𝜆𝛼 is the eigenvalue of matrix L, 𝛽𝛼𝑖 is the eigen vector value; and m denotes 

average inertia distribution on generator buses; and bus b is where disturbance occurs; 

∆𝑡 is the frequency monitoring window, and 𝑡0 is the measuring time. 𝑁𝑔 denotes the 

set of generator buses in the reduced model. The ratio of damping coefficient to inertia 

coefficient 𝛾 =  𝑑𝑖/𝑚𝑖  is assumed as a constant [100]. We can then derive the 

dynamic RoCoF related constraints for different time period as, 

𝑓𝑟𝑐𝑓,𝑖(𝑡1) ≤ −RoCoFlim, ∀ 𝑖 ∈ 𝑁𝐺 . (6.6) 

𝑓𝑟𝑐𝑓,𝑖(𝑡2) ≤ −RoCoFlim, ∀ 𝑖 ∈ 𝑁𝐺 . (6.7) 

6.1.2 Frequency Metrics Constrained Data Driven Approach 

              Given a system with N generators, the objective goal of the ordinary UC 

model is to minimize the total operating cost subject to various system operational 

constraints, 

 𝑚𝑖𝑛.    𝒞(𝑠𝑡, 𝑢𝑡),      

𝑠. 𝑡.    ℱ(𝑠𝑡, 𝑢𝑡 , 𝑑𝑡, 𝑟𝑡) = 0, 𝒢(𝑠𝑡, 𝑢𝑡, 𝑑𝑡, 𝑟𝑡) ≤ 0, ∀𝑡,  

(6.8) 

where ℱ and 𝒢 are the equality and inequality constraints respectively; 𝒔𝑡 denotes the 

system states, and 𝑢𝑡is the generation dispatch at period 𝑡. 𝑑𝑡 and 𝑟𝑡 denote the load 

profile and renewable forecast, respectively. Assume a potential disturbance 𝝕𝑡 

occurs in period 𝑡 . With system nominal frequency 𝑓𝑛 = 60  Hz being the base 
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frequency, the model based RoCoF constraints (6.6) and (6.7) could be derived and 

then added into the ordinary UC formulation to secure the system frequency stability. 

              Assumptions made during the system model analysis may introduce 

approximation error, subsequently lead to unsecure results or conservative results. The 

idea of data driven approach is to replace model-based constraints by DNN 

formulations, 

ℎ̂𝑓(𝑠𝑡, 𝑢𝑡 , 𝑟𝑡, 𝜛𝑡) ≤ 휀, (6.9) 

where  ℎ̂𝑓 is the nonlinear DNN-based frequency metrics predictor, including system 

wide maximal frequency deviation and maximal locational RoCoF; 휀 is the vector of 

predefined threshold.  
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Fig. 6.1 Overview of the proposed approach. 

              The loss of generation not only results in the largest power outage level, but 

also leads to the reduction in system inertia, which further leads to the highest RoCoF 

value and frequency deviation; thus, G-1 event is considered as the worst contingency 

in this study. It should be noted that the output vector of the DNN-based predictor 

includes multiple elements which could be generalized for other constraints without 

including more parameters. The overview of the working pipeline is shown in Fig. 6.1, 

in which ∆𝑓𝑚𝑎𝑥 is the maximal frequency deviation, and 𝑓�̇�𝑎𝑥 is the highest RoCoF 

value. 

6.2 Model based Dataset Generation 

              Wide-range space of all power injections is utilized in [111] to ensure 

reliability under vast ranges of operating conditions for a small group of generators. 

However, considering a power system consists of a large group of generators, the 

dimension of 𝑥𝑡 would increase accordingly, which would further cause exponentially 

increase in the dimension of injections state space for practical system condition [121]. 

Such wide-range injections may lead to divergence during the simulation initialization 

process and the system would also be subject to post-contingency stability issues.  

              Unlike randomly data generation considering wide-range space of 

dispatching, a model-based systematic data generation approach is proposed to 

generate reasonable and representative data that will be used to train RoCoF Predictors 

with much less computational burden and compromise of efficiency. Traditional 

SCUC (T-SCUC) models and RoCoF constrained SCUC models are implemented in 
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this process to generate training samples over various load and RES scenarios. 

Objective function of three models is to minimize the total system cost consisting of 

variable fuel costs, no-load costs, start-up costs, and reserve costs. RoCoF related 

constraints based on equivalent model and dynamic model are added into the 

formulation of system equivalent model based RoCoF constrained SCUC (ERC-

SCUC) and location based RoCoF constrained SCUC (LRC-SCUC) respectively. The 

constraints on maximal frequency deviation RoCoF for locational frequency dynamics 

are nonlinear. In order to incorporate the nonlinear RoCoF-related constraints into the 

MILP model, a piecewise linear programming method is introduced, and the detail of 

all models is presented in [105].  

6.3 Deep Learning-based Frequency Constraints 

6.3.1 Power System Feature Definition 

              The highest locational frequency deviation and highest system locational 

RoCoF are considered as functions with respect to the contingency level, contingency 

location, system states, unit dispatch. Since both the magnitude and location of the 

contingency will have impact on the locational frequency deviation and locational 

inertial response, the generator status and dispatching values are encoded in to feature 

vectors [122].  In order to track the system frequency related metrics at period t, here 

we define the feature vector used for frequency related metrics tracking. The generator 

status vector is first defined as follow, 

 𝑢𝑡 = [𝑢1,𝑡, 𝑢2,𝑡, ⋯ , 𝑢𝑁𝐺,𝑡]. (6.10) 



139 

 

The disturbance feature vector at period 𝑡 is introduced for frequency related metrics 

tracking, 

𝑃𝑡
𝑐𝑜𝑛 = 𝑚𝑎𝑥

𝑔∈𝐺
(𝑃1,𝑡, 𝑃2,𝑡, ⋯ , 𝑃𝑁𝐺,𝑡). (6.11) 

The location of the disturbance is represented by the index of the generator producing 

maximum power, 

𝑔𝑡
𝑐𝑜𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑔∈𝐺
(𝑃1,t, 𝑃2,t, ⋯ ,𝑃𝑁𝐺,t). (6.12) 

The information of magnitude and location is then encoded into the disturbance 

feature vector as [111], 

𝜛𝑡
𝐺 = [0,⋯ ,0, 𝑃𝑡

𝑐𝑜𝑛⏟
𝑔𝑡

𝑐𝑜𝑛𝑡ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

,0,⋯ ,0]. (6.13) 

The active power dispatching of all synchronous generator at period t is then 

expressed as feature vector,  

𝑃𝑡 = [𝑃1,𝑡, ⋯ , 𝑃2,𝑡, ⋯ , 𝑃𝑁𝐺,𝑡]. (6.14) 

By combing the feature vectors mentioned above, the overall feature vector 𝒙𝑡   at 

period 𝑡 can be then defined as follows, 

𝒙𝑡 = [𝑢1,𝑡, ⋯ , 𝑢𝑁𝐺,𝑡,  휀1,𝑡,⋯ ,  휀𝑁𝐺,𝑡, 𝑃1,𝑡, ⋯ , 𝑃𝑁𝐺,𝑡]. (6.15) 

6.3.2 DNN-based Frequency Metrics Predictor 

              Regarding frequency related constraints, both model-based approach and 

data-driven approach share the same variables which are determined by the generator 

status and disturbance information. Thus, A DNN-based frequency metrics predictor is 

proposed, which combines the functions of locational frequency deviation and highest 
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locational RoCoF in frequency-related constraints together into a nonlinear DNN with 

multiple outputs. The combination of these functions could significantly decrease the 

number of DNN parameters thus reducing additional variables introduced into the 

FCUC formulation. 

              In the aftermath of a large 𝐺 − 1 contingency, the frequency metrics predictor 

for ℎ can be expressed as, 

 [
𝑓𝑑𝑒𝑣

𝑓𝑟𝑐𝑓

] = ℎ̂(𝑥𝑡,𝑊
𝑓,𝑏𝑓), (6.16) 

where 𝑊𝑓  and 𝑏𝑓  denote the well-trained neural network parameters for frequency 

metrics predictor. Let 𝑓𝑑𝑒𝑣  and 𝑓𝑟𝑐𝑓  denote the predicted frequency deviation and 

highest RoCoF values respectively for case 𝒙𝑡 . Considering a DNN with 𝑁𝐿hidden 

layers, where ReLU is used as activation function for each hidden layer and the output 

layer is linear activation function. The forward propagation of each layer is then 

expressed as follows, 

 

 𝑧1 = 𝑥𝑡𝑊1 + 𝑏1,  (6.17) 

 �̂�𝑞 = 𝑧𝑞−1𝑊𝑞 + 𝑏𝑞 , (6.18) 

 𝑧𝑞 = max (�̂�𝑞 , 0), (6.19) 

 𝑓𝑑𝑒𝑣 = 𝑧𝑁𝐿
𝑊𝑁𝐿+1

𝑑𝑒𝑣 + 𝑏𝑁𝐿+1
𝑑𝑒𝑣 , (6.20) 

 𝑓𝑟𝑐𝑓 = 𝑧𝑁𝐿
𝑊𝑁𝐿+1

𝑟𝑐𝑓
+ 𝑏𝑁𝐿+1

𝑟𝑐𝑓
, (6.21) 

 

where 𝑊𝑞  and vector 𝑏𝑞  for 𝑞 ∈ 𝑁𝐿 represent the set of weight and bias across all 

hidden layers; 𝑊𝑁𝐿

𝑑𝑒𝑣 and 𝑏𝑁𝐿

𝑑𝑒𝑣 represent the set of weight and bias of the output layer 



141 

 

for maximal frequency deviation prediction, and 𝑊𝑁𝐿

𝑟𝑐𝑓
 and 𝑏𝑁𝐿

𝑟𝑐𝑓
 represent the output 

layer for system highest locational RoCoF prediction. The training process is to 

minimize the total mean squared error between the predicted output and the labeled 

outputs of all training samples as follows, 

 𝑚𝑖𝑛
𝛷

1

𝑁𝑆
∑(∆𝑓𝑚𝑎𝑥 − 𝑓𝑑𝑒𝑣)

2
+ (𝑓�̇�𝑎𝑥  − 𝑓𝑟𝑐𝑓)

2

𝑁𝑠

𝑠=1

, (6.22) 

where Φ = {𝑊𝑞 , 𝑏𝑞 ,𝑊𝑁𝐿+1
𝑑𝑒𝑣 ,𝑊𝑁𝐿+1

𝑟𝑐𝑓
, 𝑏𝑁𝐿+1

𝑑𝑒𝑣 , 𝑏𝑁𝐿+1
𝑟𝑐𝑓

}  represents the set of optimization 

variables.  

              Although the aforementioned reformulation of DNN introduces no 

approximation error, such linearization progress would introduce dense parameter 

matrix and additional binary variables into MILP model. Thus, the computational 

burden for the DNN-MILP would increase especially for the condition where multiple 

scheduling periods are limited by DNN constraints. To handle that problem, sparse 

computation and active ReLU linearization are proposed to obtain optimal efficiency.  

6.3.3 Sparse Computation 

              Conversion of DNN network into MILP has introduced group parameters. 

However, not all of these parameters are required to achieve high performance of the 

predictor. Instead of connecting every pair of neurons in each layer, we prune the 

connections and redundant parameters from networks to decrease the density of 

weights matrix without affecting performance of the frequency metrics predictor 

[123]. The example of training algorithm for sparse computation is shown in Fig. 6.2.  
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Fig. 6.2 Example of sparse fully connected neural network. 

 

Fig. 6.3 Example of sparse computation process. 

              In this work, the network’s connections are pruned during the training process 

by applying a mask [124]. First, we initialize the network and pre-trained the 

parameters of the frequency metrics predictor. For each layer chosen to be pruned, a 

binary mask variable is added which is of the same size and shape as the layer’s 

weight matrix and determines which of the weights participate in the forward 

execution of the graph as shown in Fig. 6.3. The weights in each layer are sorted by 

their absolute values and mask the smallest magnitude weights to zero. The sparsity of 

the parameter matrix is increased from an initial sparsity value 𝑠0 to a final sparsity 

value 𝑠𝑓𝑖𝑛𝑎𝑙 over a span of 𝜇 pruning steps with pruning frequency ∆𝑒, 
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𝑠𝑒 = 𝑠𝑓𝑖𝑛𝑎𝑙 + (𝑠0 − 𝑠𝑓𝑖𝑛𝑎𝑙) (1 −
𝑒 − 𝑒0

𝜇∆𝑒
)
3

, 

             for  𝑒 ∈ {𝑒0, 𝑒0 + ∆𝑒,… , 𝑒0 + 𝜇∆𝑒 }. 

(6.28) 

              Gradually increasing the sparsity of the network allows the network training 

steps to recover from any pruning-induced loss in accuracy. Similar binary masks are 

applied to the back-propagated gradients, and the weights that were masked in the 

forward execution are not updated in the back-propagation step, the overall strategy is 

introduced as follows, 
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6.3.4 Active Sampling 

              Even though the sparse computation and ReLU linearization have been 

proved to be able to improve the computational efficiency of the model, there are other 

important aspects that we should consider. However, with sparse computation 

introduced, the compressed network of predictor tuned for the data near the critical 

threshold using region-of-interest active sampling method may fail to approximate the 

output of the original network. Subsequently, the related frequency constraints may 

not bind during the unit commitment process. Thus, it is reasonable to consider the 

tradeoff between the sparsity rate and the prediction error. 

              Model-based data generation is utilized to generate a group of samples which 

are labeled with maximal frequency deviation and the highest RoCoF following the 

worst contingency. Labeling the RoCoF value of adequate samples to achieve desired 

distributions requires significant computation resources and time, which is known as 

the labeling bottleneck. In other words, how to sample the cases to be labeled is 

essential. In order to generate and label desired samples, an active sampling (AS) 

method is proposed to actively select unlabeled samples. 

              A frequency security discriminator is first trained based on the small group of 

samples ℱ with highest RoCoF and frequency deviation labeled, the average value in 

0.1s measuring interval is used. Security label 𝑓𝑠𝑒𝑐  is then applied to the training 

dataset: if the ∆𝑓𝑚𝑎𝑥 and �̇�𝑚𝑎𝑥  of a sample are all within the limit, 𝑓𝑠𝑒𝑐 is labeled as 1. 

Otherwise, if one of the metrics violate the threshold, 𝑓𝑠𝑒𝑐 is labeled as 0. And then we 

perform the active sampling strategy on unlabeled dataset 𝒰 using the discriminator. 
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The unlabeled samples whose posterior probability provided by the discriminator are 

then selected as training dataset for RoCoF and frequency deviation predictor. The 

general sampling strategy uses entropy as measure [125], 

 𝑥𝑠𝑒𝑐 = argmax
𝒰

(−∑𝑝(𝑦𝑖|𝒰)

1

𝒰

log 𝑝(𝑦𝑖|𝒰)) , (6.29) 

 𝑥𝑖𝑛𝑠𝑒𝑐 = argmin
𝒰

(−∑𝑝(𝑦𝑖|𝒰)

1

𝒰

log 𝑝(𝑦𝑖|𝒰)), （6.30） 

where  𝑦𝑖  ranges over all possible labelings, and 𝑝(𝑦𝑖|𝒰) is the predicted posterior 

probability of class membership 𝑦𝑖. This sorting process finds the largest and lowest 

from the finite set of numerical values. The selected 𝑥𝑠𝑒𝑐  is considered as sample 

distribute close the threshold which can improve the accuracy of predictor, while 

𝑥𝑖𝑛𝑠𝑒𝑐 denotes samples which help the output of the tuned frequency metrics predictor 

approximate to the original. In the other word, they help keep the constraints binding 

after the sparse computation. The selected sample 𝑥 is then added into Θ and labeled 

with highest RoCoF and frequency deviation for frequency metrics predictor training. 

6.3.5 Active ReLU Linearization 

              Activation unit has been set on the neurons of hidden layer to realize the 

nonlinearization of a neural network; activation function, such as ReLU, is applied to 

the result of linear combination of values from neuron nodes [126]. The incorporation 

of ReLU function in a neural network into MILP without no approximation would 

introduce multiple extra binary variables. Subsequently, increasing the computational 
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burden of the MILP model and leading to poor efficiency. Therefore, an active 

linearization of ReLU function has been introduced to reduce the DNN size without 

too much degradation of prediction accuracy [127].    

 

Fig. 6.4 The linear approximation of ReLU activation function. 

              Approximation of ReLU function is shown in Fig. 6.4. The weighted sum of 

input signals to the node is denoted as variable �̂�, and the output of the node is denoted 

using the variable 𝑧. Given the upper and lower bounds [𝐿𝐵, 𝑈𝐵] of �̂�, the relationship 

of 𝑧 and �̂� can then be approximated by a set of constraints 𝑧 ≥ 0, 𝑧 ≥ �̂� , and 𝑧 ≤

𝑈𝐵∙(�̂�−𝐿𝐵)

𝑈𝐵−𝐿𝐵
. These constraints are all linear equations with constant UB and LB. 

              Although ReLU linearization can be applied to all the neurons that would 

convert a DNN-FCUC model into ReLU linearized neural network based FCUC 

(RLNN-FCUC), this may lead to large approximation error and low prediction 

accuracy; and the associated frequency constraints may no longer be binding. In this 

work, we introduce an active selecting method to improve the computational 

efficiency of the DNN-FCUC model while maintaining the bindingness of derived 
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constraints. The actively sampled dataset is first fed into the well-trained frequency 

metrics predictor, a nodal positivity index 휀𝑞[𝑙] is proposed to estimate the percentage 

of positive pre-activated values of neuron node 𝑙 in 𝑞-th layer,  

 

휀𝑞[𝑙] =  
1

𝑁𝑆
(∑�̂�𝑞[𝑙],𝑠

𝑁𝑆

− ∑|�̂�𝑞[𝑙],𝑠 −
1

𝑁𝑆
∑�̂�𝑞[𝑙],𝑠

𝑁𝑆

|

𝑁𝑆

) ≥ 𝛾, (6.31) 

where 𝛾 is the threshold set to select nodes suitable for ReLU linearization with less 

approximation error. For the prediction of a given sample 𝑠, equations (6.23)-(6.26) 

for ReLU function in selected neurons can be replaced by (6.32)-(6.34) as follows,  

 𝑧𝑞[𝑙],𝑠 ≥ �̂�𝑞[𝑙],𝑠, ∀𝑞, ∀𝑙, ∀𝑠, (6.32) 

 
𝑧𝑞[𝑙],𝑠 ≤

𝑈𝐵𝑞[𝑙] ∙ (�̂�𝑞[𝑙],𝑠 − 𝐿𝐵𝑞[𝑙])

𝑈𝐵𝑞[𝑙] − 𝐿𝐵𝑞[𝑙]
, ∀𝑞, ∀𝑙, ∀𝑠, (6.33) 

 𝑧𝑞[𝑙],𝑠 ≥ 0, ∀𝑞, ∀𝑙, ∀𝑠. (6.34) 

 

6.4 Mixed-Integer Formulation of ALSNN-FCUC Model 

              In this section, the proposed ALSNN-FCUC considering frequency related 

constraints is formulated. The objective of the modified ALSNN-FCUC model is to 

minimize total operating cost subject to various system operational constraints and 

guarantee system frequency stability. The formulation is shown below, 

 𝑚𝑖𝑛
𝛷

∑ ∑(𝑐𝑔𝑃𝑔,𝑡 + 𝑐𝑔
𝑁𝐿𝑢𝑔,𝑡 + 𝑐𝑔

𝑆𝑈𝑣𝑔,𝑡+𝑐𝑔
𝑅𝐸𝑟𝑔,𝑡)

𝑡 ∈𝑇𝑔 ∈𝐺

,      (6.35) 

∑ 𝑃𝑔,𝑡

𝑔 ∈𝐺

+ ∑ 𝑃𝑔,𝑡

𝑘 ∈𝐾(𝑛−)

− ∑ 𝑃𝑔,𝑡

𝑘 ∈𝐾(𝑛+)

− 𝐷𝑛,𝑡 

+ 𝐸𝑛,𝑡  =  0, ∀𝑛, 𝑡, 

(6.36) 
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𝑃𝑘,𝑡 − 𝑏𝑘(𝜃𝑛,𝑡 − 𝜃𝑚,𝑡)  =  0, ∀𝑘, 𝑡 (6.37) 

−𝑃𝑘
𝑚𝑎𝑥  ≤  𝑃𝑘,𝑡  ≤  𝑃𝑘

𝑚𝑎𝑥 , ∀𝑘, 𝑡 (6.38) 

𝑃𝑔
𝑚𝑖𝑛𝑢𝑔,𝑡  ≤  𝑃𝑔,𝑡, ∀𝑔, 𝑡, (6.39) 

𝑃𝑔,𝑡 + 𝑟𝑔,𝑡  ≤  𝑢𝑔,𝑡𝑃𝑔
𝑚𝑎𝑥 , ∀𝑔, 𝑡, (6.40) 

0 ≤  𝑟𝑔,𝑡  ≤  𝑅𝑔
𝑟𝑒𝑢𝑔,𝑡, ∀𝑔, 𝑡, (6.41) 

∑ 𝑟𝑗,𝑡  ≥

𝑗 ∈𝐺

𝑃𝑔,𝑡 + 𝑟𝑔,𝑡, ∀𝑔, 𝑡, (6.42) 

𝑃𝑔,𝑡 − 𝑃𝑔,𝑡−1  ≤  𝑅𝑔
ℎ𝑟 , ∀𝑔, 𝑡, (6.43) 

𝑃𝑔,𝑡−1 − 𝑃𝑔,𝑡 ≤ 𝑅𝑔
ℎ𝑟 , ∀𝑔, 𝑡, (6.44) 

𝑣𝑔,𝑡  ≥  𝑢𝑔,𝑡 − 𝑢𝑔,𝑡−1,    ∀𝑔, 𝑡, (6.45) 

𝑣𝑔,𝑡+1  ≤  1 − 𝑢𝑔,𝑡, ∀𝑔, 𝑡 ≤ 𝑛𝑇 − 1, (6.46) 

𝑣𝑔,𝑡  ≤  𝑢𝑔,𝑡,         ∀𝑔, 𝑡, (6.47) 

∑ 𝑣𝑔,𝑠

𝑡

𝑠=𝑡−𝑈𝑇𝑔

≤ 𝑢𝑔,𝑡, ∀𝑔, 𝑡 ≥ 𝑈𝑇𝑔, (6.48) 

∑ 𝑣𝑔,𝑠

𝑡+𝐷𝑇𝑔

𝑠=𝑡−𝑈𝑇𝑔

≤ 1 − 𝑢𝑔,𝑡, ∀𝑔, 𝑡 ≥ 𝑛𝑇 − 𝐷𝑇𝑔, (6.49) 

𝑢𝑔,𝑡, 𝑣𝑔,𝑡 ∈ {0,1}, ∀𝑔, 𝑡.  (6.50) 

              Equation (6.35) is the objective function, and the basic constraints include 

(6.36)-(6.50). Equation (6.36) enforces the nodal power balance. Network power flows 

are calculated in 6.37) and are restricted by the transmission capacity as shown in 

(6.38). The scheduled energy production and generation reserves are bounded by unit 

generation capacity and ramping rate (6.39)-(6.44). As defined in (6.42), the reserve 

requirements ensure the reserve is sufficient to cover any loss of a single generator. 
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The start-up status and on/off status of conventional units are defined as binary 

variables (6.45)-(6.47). Minimum-down time before a generator can be started-up and 

the minimum-up time before a generator can be shutdown are depicted in (6.48) and 

(6.49), respectively. Indicating variables for generator start-up and commitment status 

are binary and are represented by (6.50). 

              Since 𝑥𝑡 contains the max operator, and disturbance vector cannot be directly 

used in the encoding formulation. Supplement variables 𝜇𝑔,𝑡  and 𝜌𝑔,𝑡  are used to 

indicate the largest generator output for period 𝑡. The reformulations are expressed as 

follows, 

𝑃𝑔,𝑡
𝑐𝑜𝑛 − 𝑃𝑔,𝑡 ≤ 𝐴(1 − 𝜇𝑔,𝑡), ∀𝑔, 𝑡, (6.51) 

∑ 𝜇𝑔,𝑡

𝑔 ∈𝐺

= 1, ∀𝑡, (6.52) 

𝜇𝑔,𝑡 ∈ {0,1}, ∀𝑔, 𝑡, (6.53) 

𝜌𝑔,𝑡 − 𝑃𝑔,𝑡 ≥ −𝐴(1 − 𝜇𝑔,𝑡), ∀𝑔, 𝑡, (6.54) 

𝜌𝑔,𝑡 − 𝑃𝑔,𝑡 ≤ 𝐴(1 − 𝜇𝑔,𝑡), ∀𝑔, 𝑡, (6.55) 

0 ≤ 𝜌𝑔,𝑡 ≤ 𝐴𝜇𝑔,𝑡, ∀𝑔, 𝑡, (6.56) 

where 𝐴 is a big number. The input feature vector is then reformulated as follows, 

𝑥𝑡 = [𝑢1,𝑡,⋯ , 𝑢𝑁𝐺,𝑡,  𝜌𝑔,𝑡, ⋯ ,  𝜌𝑁𝐺,𝑡, 𝑃1,𝑠, ⋯ , 𝑃𝑁𝐺,𝑠]. (6.57) 

              Then we introduce the formulation of proposed frequency metrics predictor. 

As discussed before, the neuron of each layer with positivity index 휀𝑞[𝑙] larger than 𝛾 

is selected out and added into set ℋ. The reformulations of ReLU activation on the 

selected neurons are expressed as follows,  
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𝑧1 = 𝒙𝑡𝑊1 + 𝑏1, ∀𝑡, (6.58) 

𝑧𝑞[𝑙],𝑡 ≥ �̂�𝑞[𝑙],𝑡, ∀𝑞, ∀𝑙 ∈ ℋ, ∀𝑡, (6.59) 

𝑧𝑞[𝑙],𝑡 ≤
𝑈𝐵𝑞[𝑙] ∙ (�̂�𝑞[𝑙],𝑡 − 𝐿𝐵𝑞[𝑙])

𝑈𝐵𝑞[𝑙] − 𝐿𝐵𝑞[𝑙]
, ∀𝑞, ∀𝑙 ∈ ℋ, ∀𝑡. (6.60) 

              The ReLU function on the rest of neuron is reformulated with no 

approximation as follows. (6.66) and (6.67) constrain the maximal frequency 

deviation and maximal RoCoF,  

𝑧𝑞[𝑙],𝑡 ≤ �̂�𝑞[𝑙],𝑡 − 𝐴(1 − 𝑎𝑞[𝑙],𝑡), ∀𝑞, 𝑙 ∈ ℋ̅, 𝑡, (6.61) 

𝑧𝑞[𝑙],𝑡 ≥ �̂�𝑞[𝑙],𝑡, ∀𝑞, ∀𝑙 ∈ ℋ̅, ∀𝑡, (6.62) 

𝑧𝑞[𝑙],𝑡 ≤ 𝐴𝑎𝑞[𝑙],𝑡, ∀𝑞, ∀𝑙 ∈ ℋ̅, ∀𝑡, (6.63) 

𝑧𝑞[𝑙],𝑡 ≥ 0, ∀𝑞, ∀𝑙, ∀𝑡, (6.64) 

𝑎𝑞[𝑙],𝑡 ∈ {0, 1}, ∀𝑞, ∀𝑙, ∀𝑡, (6.65) 

𝑧𝑁𝐿,𝑡𝑊𝑁𝐿+1
𝑑𝑒𝑣 + 𝑏𝑁𝐿+1

𝑑𝑒𝑣 ≤ 𝑓𝑛𝑜𝑚 − 𝑓𝑙𝑖𝑚, (6.66) 

𝑧𝑁𝐿,𝑡𝑊𝑁𝐿+1
𝑟𝑐𝑓

+ 𝑏𝑁𝐿+1
𝑟𝑐𝑓

≤ −𝑅𝑜𝐶𝑜𝐹𝑙𝑖𝑚. (6.67) 

6.5 Results Analysis 

              Case study on IEEE 24-bus system [128] is provided to demonstrate the 

effectiveness of the proposed methods. This test system contains 24 buses, 33 

generators and 38 lines, which also has wind power as renewable resources. The 

mathematical model-based data generation is operated in Python using Pyomo 

[129]Error! Reference source not found.. The PSS/E software is used for time 

domain simulation and labeling process [130]. We use full-scale models for the 
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dynamic simulation during the labeling process: GENROU and GENTPJ for the 

synchronous machine; IEEEX1 for the excitation system; IEESGO for the turbine-

governor; PSS2A for the power system stabilizer. Standard WTG and corresponding 

control modules are employed. The FCUC is performed using Pyomo and Gurobi on a 

window laptop with Intel(R) Core(TM) i7 2.60GHz CPU and 16 GB RAM. 

6.5.1 Predictor Training 

              We first generate 3000 samples as ℒ  for predictor training. Each case is 

labeled with security status, 0 for insecure and 1 for secure based on post contingency 

conditions. To ensure the practicality of the dataset and the generality of the trained 

model, load profile and RES profile are sampled based on Gaussian distribution while 

the deviation of means value ranges from [-20%, 20%] of the based value. The 

optimality gap of the solver is set to 0.1%. We assume SGs have adequate reactive 

power capacity, and WTGs are controlled with a unity power factor.  

              Actively sampling approach is applied to select desired samples from 

unlabeled samples. Two other datasets are created as benchmark sets: (1) a random 

dataset is generated using randomly selected (RS) method; (2) a dataset based on 

uncertainty sampling (US) strategyError! Reference source not found. which 

queries the instance whose posterior probability of being positive is nearest 0.5. 
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(a) Randomly selected dataset. 

 

(b) Uncertainty sampling dataset. 

 

(c) Active sampling dataset. 

Fig. 6.5 RoCoF value distributions for three different datasets.   
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              For each strategy, we selected 500 samples from the generated training 

dataset. The distributions of RoCoF values of the sampled cases are depicted in Fig. 

6.5. The interval size of the distribution bin is set 0.1, and regions closest to the 

threshold are [0.4, 0.5] and [0.5, 0.6]. With randomly selected method, most of the 

cases distribute within [0.6, 0.7] and [0.7, 0.8], while only 15% of the cases are within 

the range [0.4, 0.6] closest to the threshold. With uncertainty sampling applied, nearly 

40% of the cases the selected cases centered around the threshold while cases with 

RoCoF values larger than 1.0 Hz/s are filtered out. When we use the proposed active 

learning method, the samples closest to the threshold increase; the number of samples 

whose RoCoF vales far away from the threshold increases as desired. 

Table 6.1 Prediction Accuracy with 1% Tolerance [%] 

Metrics  𝑓�̇�𝑎𝑥 ∆𝑓𝑚𝑎𝑥 

DNN 74.84 60.05 

SNN 52.29 59.11 

              We first compare the prediction accuracy of proposed DNN-based predictor 

with SNN-based predictor on RS Dataset. The total layer of the DNN-based predictor 

is four, and the number of neurons is set 10 for each hidden layer. ReLU is used as the 

activation function. Results in Table 6.1 show that DNN-based predictor has higher 

prediction accuracy in both RoCoF prediction and frequency deviation. 

              The proposed frequency metrics predictor with the same DNN structure is 

then tested on different dataset. As results shown in Table 6.2 and Table 6.3, RoCoF 

prediction accuracies of all cases are above 93.27% with an error tolerance of 5%, 
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while the frequency deviation validation accuracies are relatively lower. Predictor 

trained by uncertainty sampling dataset has the highest prediction accuracy on both 

RoCoF and frequency deviation values as expected, which gives more accurate 

frequency related constraints. While the validation accuracy of the proposed active 

learning dataset is only slightly lower than the uncertainty sampling dataset-based 

predictor. 

Table 6.2 RoCoF Validation Accuracy [%] 

Tolerance  10% 9% 8%  7%  6% 5% 

RS Dataset 98.39 97.92 97.27 96.05 94.66 93.27 

US Dataset 99.26 98.26 97.93 97.23 96.57 96.29 

AS Dataset 98.44 98.07 97.60 97.27 96.28 95.11 

Table 6.3 Frequency Deviation Validation Accuracy [%] 

Tolerance  10% 9% 8%  7%  6% 5% 

RS Dataset 97.96 97.44 96.57 93.71 89.50 84.76 

US Dataset 99.01 98.73 97.79 96.62 93.36 91.36 

AS Dataset 98.88 98.63 97.17 95.18 91.16 88.78 

              Full-range out-of-sample dataset are used for sparse neural network validation. 

Sparsity of the neural network is increased from 0% to 90% with interval at 10%. The 

results of RoCoF prediction accuracy with the tolerance of 5% are depicted in Fig. 6.6. 

As we can see in both cases, validation accuracy is relatively high at the beginning of 

the test. When sparsity reaches 60%, the RoCoF prediction accuracy of predictor 

trained by uncertainty sampling dataset drops significantly, implying low robustness. 
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For predictor based on randomly selected dataset, the accuracy drops to 80.04% at the 

sparsity of 50% and gets totally lost at the sparsity of 0.7. Meanwhile, the predictor 

trained by active sampling dataset significantly outperforms the others at the sparsity 

of 80%, implying accurate prediction with much less computational burden.  

 

Fig. 6.6 RoCoF prediction accuracy with different NN sparsity.   

 

Fig. 6.7 Frequency deviation prediction accuracy with different NN sparsity.   
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              Results in Fig. 6.7 show that the predictor trained by active sampling dataset 

has higher robustness against sparsity than two other cases. However, comparing to 

the RoCoF prediction accuracy, frequency deviation prediction accuracy is more 

sensitive to the change in network sparsity. Although having superiority over two 

other predictors, the prediction accuracy of predictor trained by active sampling 

dataset is lost at the sparsity of 0.7. 

6.5.2 Simulation Results 

              The total scheduling horizon is 24 hours, and hours 9-12 are selected to be the 

time instance where frequency related constraints are applied to secure system stability 

against generator contingency considering high penetration level of intermittent wind 

generation and peak hour impact. The test case has a demand ranging from 1,348 MW 

to a peak of 1,853MW. Regarding post-contingency frequency limits, the maximal 

frequency deviation should not be larger than 0.5 Hz, and the RoCoF must be higher 

than -0.5Hz/s to avoid the tripping of RoCoF-sensitive protection relays. The 

optimality gap is set to 0.1%.   

              We first investigate the impact of frequency metrics predictor sparsity on 

efficiency of sparse neural network based FCUC (SNN-FCUC) without ReLU 

linearization. The heatmap of computational time is shown in Fig. 6.8, and 100% 

sparsity indicates no frequency related constraints. Computational time less than 5 

seconds indicating non-binding of the constraints.  As we can see, the computational 

times of RS and US based predictors drops significantly when sparsity reaches 70%, 

since frequency related constraints under such sparsity are not binding, implying 
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frequency stability is not enforced as demonstrated with time-domain simulations. For 

the case where predictor is trained by AS dataset, the solution is no longer valid in 

terms of frequency stability when sparsity reaches 90%. It should be noted that 

although the RS based predictor has an RoCoF prediction accuracy of 77.69% at the 

sparsity of 70%, frequency requirements are not respected. At the same time, the AS 

based predictor shows much higher robustness when being incorporated into MILP 

problem. 

 

Fig. 6.8. Computational time of SNN-FCUC with different sparsity.  

              Frequency metrics predictor with sparsity of 0.8 is selected based on the 

proposed method. The trained well predictor is then incorporated into ALSNN-FCUC 

models. RoCoF prediction accuracy of the sparse predictor is 87.47%, and the 

frequency deviation prediction accuracy is 80.80%. 𝛾 for active neuron selection is set 

0.25. 𝑓�̇�𝑎𝑥  and ∆𝑓𝑚𝑎𝑥  are obtained by conducting time domain simulations under 

worst contingency on PSS/E at hour 10.  
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              The simulation results of the proposed ALSNN-FCUC model and benchmark 

models are listed in Table 6.4. Comparing to T-SCUC, all frequency constrained 

models have relatively higher operational cost, the extra cost comes from the efforts in 

securing the frequency nadir and RoCoF stability. Solution of LRC-SCUC model is 

relatively conservative due to approximation error. �̇�𝑚𝑎𝑥 of DNN-FCUC model is 0.50 

Hz/s, indicating that the solution perfectly satisfies the threshold and there is no 

conservativeness. It should be also noted that ∆𝑓𝑚𝑎𝑥 of models with RoCoF related 

constraints applied are all within the safe range, implying RoCoF related constraints 

are more likely to bind comparing to the frequency deviation constraints. And inertia 

related protections would be a main factor that limits the transition toward RES 

dominant system. 

Table 6.4 Comparison of Different Models 

Model  
Total Cost 

[$] 

Computational 

Time [s] 
𝑓�̇�𝑎𝑥 [Hz/s]  ∆𝑓𝑚𝑎𝑥 [Hz] 

T-SCUC 419,935 3.89 1.05 0.51 

ERC-SCUC 420,171 4.53 0.60 0.29 

LRC-SCUC 425,929 6.05 0.44 0.23 

DNN-FCUC 422,497 22.56 0.50 0.24 

ALSNN-

FCUC 
421,985 8.56 0.50 0.24 

              A noticeable increase in computational time can also be observed when there 

is no approximation in the DNN-FCUC. For the proposed ALSNN-FCUC model, the 

computational time is reduced by 62% from 22.56 s to 8.56 s when sparse 



159 

 

computation as well as active ReLU linearization is applied. Results show that such 

algorithm significantly improves the computational efficiency while maintaining the 

highest post-contingency RoCoF values within an acceptable range. 

 

Fig. 6.9 RoCoF evolution of ERC-SCUC model under worst contingency at hour 10. 

v  

Fig. 6.10 RoCoF evolution of ALSNN-FCUC model under worst contingency at hour  

10. 

              We then compare the time domain simulation results of the proposed 

ALSNN-FCUC with ERC-SCUC where frequency related constraints are derived 

from system equivalent model. Worst G-1 contingency is conducted under dispatching 
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during hour 10.  RoCoF evolutions are shown in Fig. 6.9 and Fig. 6.10. As we can see, 

widely used uniform model-based approach cannot ensure locational RoCoF security 

due to approximation error of model simplification. With frequency metrics predictor-

based constraints added, the proposed ALSNN-FCUC frameworks can secure the 

system highest locational RoCoF within a safe range. 

Table 6.5 Computational Time [s] of Different Constrained Intervals 

Total Number of 

Constrained Hour  
4 8 12 16 20  24 

DNN-FCUC 23 268 523 NA NA NA 

ALSNN-FCUC 8 14 50 143 254 1223 

              Additionally, impact of total number of constrained hours on computational 

time of FCUC models over 24 hours scheduling horizon is investigated. Results in 

Table 6.5 show that for DNN-FCUC without sparse computation and active 

linearization process, computational time for solving FCUC framework increases 

exponentially as the number of hours that enforce frequency requirements increases. 

DNN-FCUC reaches the time limit at 3600 seconds when the number of total 

constrained periods is larger than 16 periods. While the proposed ALSNN-FCUC 

model has much higher efficiency.  

              The voltage dynamics of generators are plotted in Fig. 6.11. As we can see, 

the proposed ALSNN-FCUC dispatch also satisfies the voltage limits for given 

conditions. It should be noted that voltage and related metrics could be potentially 
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incorporated into the frequency metrics predictor-based constraints with nearly 

negligible increase in the computational burden. 

 

Fig. 6.11 Voltage evolution of ALSNN-FCUC model under worst contingency during  

period 10. 

6.6 Summary 

              This chapter proposes an ALSNN-FCUC model which incorporates 

frequency related constraints derived from deep neural networks. A DNN based 

frequency metrics predictor is constructed to represent maximal frequency and the 

highest RoCoF value. With concepts of sharing parameters, the proposed approaches 

are generic and can be implemented to track more potential system metrics without 

increasing much computational burden.   

              In addition, the proposed ALSNN-FCUC approach incorporates sparse 

computations to perform parameter selection and increase neural network sparsity. 

This proposed sparse DNN subsequently reduces the computational burden of the 

framework. We propose an active sampling method to improve the robustness of the 
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trained predictor. This method allows us to increase the sparsity of trained well 

frequency metric predictor while maintaining the bindingness of these frequency 

related constraints within FCUC formulations. An active ReLU linearization method 

is performed over selected neurons to further improve the model efficiency. As 

compared to traditional DNN based data-driven approach, the proposed ALSNN-

FCUC can maintain the system frequency related constraints under worst contingency 

while reducing the computational time. Verifications on PSS/E show that the proposed 

ALSNN-FCUC model can efficiently provide high quality solutions which can secure 

system frequency stability without conservativeness. 
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7. CONCLUSION AND FUTURE WORK 

              Power system inertia plays a critical role in maintaining the stability of the 

power grid. Inertia represents the ability of the power system to respond to sudden 

changes in the balance between electricity generation and consumption. If the grid 

experiences a sudden increase or decrease in the amount of electricity being generated, 

the inertia of the system helps to maintain a stable frequency and prevent power 

outages. In the recent decades, the increasing integration of variable renewable 

generation results in the reduction in the system inertia, which poses a serious 

challenge for frequency regulation. Accurately estimating the inertia of the system is 

therefore crucial for ensuring that the grid remains stable and reliable under different 

operating conditions. Additionally, proper estimation of inertia can help grid operators 

optimize the operation of the power system through frequency related ancillary 

services, leading to more efficient and cost-effective energy management.  

              In addition, system inertia is an important parameter that needs to be 

considered in the formulation of SCUC. This is because system inertia directly affects 

the response of the power system to disturbances, such as sudden changes in load or 

generation. Various frequency related constraints are incorporated to ensure that the 

total system inertia remains above a certain threshold, or to limit the rate of change of 

frequency (RoCoF) to ensure that the power system remains stable considering the 

worst contingency. Including inertia related constraints also ensures the power system 

can respond adequately to disturbances. This is particularly important in power 

systems with high levels of renewable energy sources, which have lower levels of 
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inertia compared to traditional fossil-fueled power plants. In such systems, it is 

necessary to carefully consider the system inertia in order to maintain grid stability. 

7.1 Contributions 

              Evaluation of the system inertia distribution traditionally based on a single 

disturbance event may be susceptible to power swings and oscillation between 

machines, which could deteriorate the accuracy of measurements and lead to high 

biased estimation. Based on the equivalent center of inertia concept, a dynamic system 

inertia distribution estimation method is proposed in chapter 2. Results also show that 

power systems with lower renewable energy source (RES) penetration exhibit a better 

frequency response, with a higher nadir and less steep RoCoF. The conducted 

sensitivity test determines the optimal integration period for the proposed dynamic 

inertia estimation method that uses a clustering algorithm to estimate system inertia by 

accounting for perturbation location and oscillation between machines. The study 

found that measurements taken from buses within the Center of Inertia (COI) area are 

relatively stable compared to those from neighboring areas and are therefore more 

reliable. The estimation process also identified unstable buses experiencing harmonic 

waves. Additionally, the study examined the impact of the geographic location of RES 

on the COI area. The proposed method is more robust and accurate in estimating 

system inertia distribution, and potential applications using the concept of inertia 

distribution estimation will be explored in the future. 

              Utilizing neural networks to estimate system inertia constant has become 

possible due to the vast amounts of data available from power system digital 
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equipment and advanced measuring infrastructures like PMUs. In chapter 3 we 

introduce LRCN and GCN based learning algorithms to estimate inertia constant by 

using system-wide ambient measurements gathered from WAMS as candidate features 

for model training. A wrapper feature selection is used to optimize the feature 

combination. Due to the limitations on PMU settings, the authors propose a ZGIB-

OPP method to maximize the observability of WAMS with limited PMU resources. 

Results indicate that the proposed LRCN and GCN models outperform the benchmark 

DNN and CNN models, even under conditions with high noise levels. The ZGIB-OPP 

method was also found to improve the performance of all implemented models. This 

approach is suitable for estimating inertia constant under realistic conditions, 

considering the IEEE 24-bus system model used in this research features a mix of 

synchronous generators and inverter-based resources. 

              In chapter 4, we introduce the concept of locational frequency security and 

investigate the impact of the Fiedler mode on locational frequency dynamics. The 

expression of locational frequency dynamics accounting for 𝐺 − 1 contingency are 

derived based on in multi-machine systems reduced model. To capture the highest 

locational RoCoF during oscillation, a multiple-measurement-window method is 

proposed tracking the average RoCoF. Additionally, a piecewise linearization-based 

method is introduced to convert non-linear frequency constraints into linear frequency 

constraints in the LRC-SCUC model. This enables optimal scheduling of synchronous 

inertia as well as inertial services provided by non-synchronous resources to meet the 

minimum system inertia requirement for power systems with higher RES integration. 
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Simulation results show that incorporating location-based RoCoF constraints in the 

SCUC model ensures locational frequency security during the worst-case contingency 

event. These RoCoF-related constraints also significantly affect the scheduling of 

synchronous generators and the expected system cost. The effect of virtual inertia on 

inertia pricing and market efficiency is demonstrated, and the results suggest that 

introducing virtual inertia can reduce the total cost by avoiding starting up 

unnecessary commitment of extra expensive synchronous generators. Compared to the 

VI-ERC-SCUC model, the VI-LRC-SCUC model is more sensitive to inertia price. 

              Chapter 5 proposes two data driven frame works to secure system RoCoF 

securities under UC schedules. Initially we use model-based method to generate 

dataset which covers all conditions. Model-based approaches such as T-SCUC, ERC-

SCUC and LRC-SCUC that enforcing system locational frequency security are 

proposed to efficiently generate realistic data for predictor training. DNN and CNN 

based RoCoF predictors are then constructed to track the highest RoCoF value of low 

inertia power system under worst contingency on the generated dataset. The well-

trained RoCoF predictor is then integrated into the linear SCUC model by applying a 

PWL method to linearize the ReLU functions of each neuron in the predictor. 

Furthermore, DNN-RCUC and CNN-RCUC models are proposed to ensure system 

frequency stability post-contingency. 

              The effectiveness of several SCUC models, including T-SCUC, ERC-SCUC, 

LRC-SCUC, DNN-RCUC, and CNN-RCUC, is evaluated on the IEEE 24-bus system 
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using Pyomo simulations. The results show that the proposed DNN-RCUC and CNN-

RCUC models can reduce reserve costs while slightly increasing operational costs.   

              In addition, the proposed ALSNN-FCUC approach incorporates sparse 

computations to perform parameter selection and increase neural network sparsity. 

The proposed sparse DNN subsequently reduces the computational burden of the 

framework. We propose an active sampling method to improve the robustness of the 

trained predictor. This method allows us to increase the sparsity of trained well 

frequency metric predictor while maintaining the bindingness of these frequency 

related constraints within FCUC formulations. An active ReLU linearization method 

is performed over selected neurons to further improve the model efficiency. As 

compared to traditional DNN based data-driven approach, the proposed ALSNN-

FCUC can maintain the system frequency related constraints under worst contingency 

while reducing the computational time. Verifications on PSS/E show that the proposed 

ALSNN-FCUC model can efficiently provide high quality solutions which can secure 

system frequency stability without conservativeness.  

7.2 Future Work  

              In chapter 3, LRCN and FCN based inertia estimation algorithms were 

proposed using system wide measurements from WAMS. In chapter 5 and chapter 6, 

deep neural networks were leveraged for system frequency metrics tracking, the 

derived frequency related constraints are incorporated into SCUC thereby securing 

system frequency stability with smaller RoCoF violation gap comparing to model 

based SCUC approaches. The linearization of ReLU in neural network has introduced 
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extra variables, resulting in computational efficiency issues.  Along with this 

preliminary case studies for the proposed NN based RCUC and FCUC models were 

also presented. The future work can be considered in simultaneously tracking multiple 

metrics related to system reliability issues such as transient stability, small-signal 

stability, and voltage stability. Additionally, variable reduction of SCUC could be 

implemented by predicting generator status and line loading factor using machine 

learning algorithms, and GNN could be utilized to improve the generator status 

prediction accuracy by incorporating topography information of the network. The 

machine learning method can also be applied to power flow optimization problem 

which, the computational issues could be relieved when the status of generators is not 

included into the problem. Besides that, the impact of inverter-based sources such as 

virtual machine and demand side synchronous machines could be modeled into the 

simulation. Furthermore, data related weather patterns and scenarios can be studied to 

predict system dynamic rating model and reserve values to handle system with high 

RES penetration level.  
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