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Chapter 1

Introduction
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A power system is an electrical network of interconnected 
elements that are used to generate, transmit, and consume 
electric power. It contains various types of elements:

4Generation

Transmission 
& Distribution

Consumption

• Generators

• Loads

• Transmission lines

• Shunts

• HVDC

• … …

• Transformers

• Phase shifters

• Circuit breakers

Power Systems



Power System Management
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• Power system management problems can be divided 
into a few groups based on time-scale:

• 5-40 years: power system expansion planning

• 1-3 years: maintenance scheduling for large equipment, long-
term bilateral contracts, generation capacity commitment

• 1 day - 1 week: maintenance scheduling for medium and small 
equipment; power system operational planning

• 1 day: day-ahead scheduling (through SCUC) 

• 5-30 minutes: contingency analysis, look-ahead dispatching

• < 1 minute: system control, frequency regulation, stability

Source: Li, Xingpeng (2022): ECE6327_SmartGrid. figshare. Online resource. https://doi.org/10.6084/m9.figshare.19761268.v1
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Day-Ahead Scheduling

• Day-ahead scheduling is to determine the ON/OFF status 
of generators for different hourly intervals in the next 
operating day to meet the forecasted loads and other 
constraints such that the total cost is minimized.

• To efficiently operate the power system, we want least-
cost solutions that maintain system security.

• In day-ahead scheduling, we solve the optimization 
problem: security-constrained unit commitment (SCUC).

• SCUC: MIP, MILP.

• Binary variables are required to represent the on/off status of each unit in 
each time interval.

Source: Li, Xingpeng (2022): ECE6327_SmartGrid. figshare. Online resource. https://doi.org/10.6084/m9.figshare.19761268.v1



Contingency
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What is a “Contingency”?
• The loss/failure of a single element or several elements in the 
power system.

• Failure of a single element (N-1):
• A generator contingency.
• A branch contingency.

• In the U.S., North American Electric Reliability Corporation 
(NERC) requires “N-1”.
• N-1 refers to a system with N components, and N-1 is the system state with a 

single component out.
• This rule states that no single outage will result in other components 

experiencing flow or voltage limit violations.
• ensure the reliability of the North American bulk power systems



Preventive and Corrective 
Actions

• Preventive actions are implemented in a prior sense 
to avoid a disturbance or contingency in the system.
– De-rate transmission line ratings to leave excess capacity

– Keep generators from producing at their max output

– Reserves to handle uncertainty.

• Corrective actions are implemented after a 
disturbance or contingency in the system.
– Generation re-dispatch

– FACTS

– Network Reconfigurations (CNR)

– Demand Response (CDR).
8

Can be used both as preventive 
and corrective action.



Chapter 2

System Flexibility Benefits
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Overview

Traditional approach:

– System flexibility is one-way (top-down)

– Commit more generators.

What are other forms of flexibility in the system?

– Network topology built with redundancy (Meshed 
structure) 

– Demand flexibility through Demand response

10
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• High-voltage transmission subsystem Meshed network

Suppliers: 
generators (units) Customers: 

demands (loads)
Electrical network

Power System Diagram

Source: Li, Xingpeng (2022): ECE6327_SmartGrid. figshare. Online resource. https://doi.org/10.6084/m9.figshare.19761268.v1



Industrial Practice: PJM 
(CNR)

Source: http://www.pjm.com/markets-and-operations/etools/oasis/system-information/switching-solutions.aspx
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Proposed method

𝑀𝑖𝑛 
𝑔,𝑡

𝑐𝑔𝑃𝑔𝑡 + 𝑐𝑔
𝑁𝐿𝑢𝑔𝑡 + 𝑐𝑔

𝑆𝑈𝑣𝑔𝑡

s.t.:

10-𝑀𝑖𝑛 𝐺𝑒𝑛 𝑅𝑎𝑚𝑝𝑖𝑛𝑔 𝑓𝑜𝑟 𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑐𝑦
𝑃𝑜𝑠𝑡-𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑐𝑦 𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑛𝑔 𝑜𝑓 𝑙𝑖𝑛𝑒 𝑓𝑙𝑜𝑤

𝑆𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 (𝑟𝑒𝑑𝑢𝑐𝑒 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒)
𝑃𝑜𝑠𝑡-𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑐𝑦 𝑛𝑜𝑑𝑒 𝑏𝑎𝑙𝑎𝑛𝑐𝑒

𝐺𝑒𝑛 𝑙𝑖𝑚𝑖𝑡𝑠
𝑅𝑒𝑠𝑒𝑟𝑣𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡
𝑃𝑜𝑤𝑒𝑟𝑓𝑙𝑜𝑤 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝑁𝑜𝑑𝑒 𝑏𝑎𝑙𝑎𝑛𝑐𝑒
𝐻𝑜𝑢𝑟𝑙𝑦 𝑟𝑎𝑚𝑝-𝑢𝑝 𝑎𝑛𝑑 𝑟𝑎𝑚𝑝-𝑑𝑜𝑤𝑛 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝑆𝑡𝑎𝑟𝑡-𝑈𝑝 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠
𝑀𝑖𝑛-𝑈𝑝/𝑀𝑖𝑛-𝐷𝑜𝑤𝑛 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

Extensive formulation: 
Co-optimize Base-case 
constraints and Post-

contingency constraints

Detailed formulation in appendix
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𝑢𝑔𝑡, 𝑣𝑔𝑡, 𝑟𝑔𝑡

𝑃𝑔𝑐𝑡, 𝑟𝑔𝑐𝑡,

𝑃𝑘𝑐𝑡, 𝑧𝑘𝑐𝑡
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IEEE 24-Bus system

18 21 22

23

13

12

10
6

8

721

4

5

3 9

11

24

14

16 19 20

17

32 38

33
31

25

26

34

36

37

35

3
0

2
8

29

23

2
4

2
7

2
2

2
0

2
1

18

1
9

7

1
4

1
6

1
5

1
7

12

106

8

2

4

1

3
5

11

13

9

ng gen Index
n Branch Index
n Bus Index

1g 2g 3g 4g 5g 6g 7g 8g 9g 10g 11g

1
2 g

1
3 g

1
4 g

3
1 g

3
2 g

3
3 g

15g

22g

16g 17g 18g 19g 20g 21g

25g 26g 27g 28g 29g 30g
24g23g

• Number of buses: 24 
• Number of Lines: 38
• Number of generators: 33
• 24-hour (Day-Ahead) load period

14
Source: Arun Venkatesh Ramesh and Xingpeng Li, “Security-constrained Unit Commitment with Corrective Transmission Switching,” North American 
Power Symposium (NAPS), Wichita, KS, USA, Oct. 2019.



Results

N-1 SCUC without CNR N-1 SCUC with CNR

Scenario I II I II

Cost ($) 932,911 921,812 923,995 921,812

𝑪𝑪 ($) 11,099 2,183

Total Cost benefits

• CNR results in reduction of 
congestion cost by 80.33%

• Flexibility in the network is 
utilized 

𝐶𝐶 = 𝑇𝐶𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐼 − 𝑇𝐶𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐼𝐼

• Scenario I: regular transmission emergency rating 

• Scenario II: infinite transmission emergency rating

(benchmark)

Outage Line
Switched OFF 

Line
4 31
7 34
8 5

12 37
17
…

31
…

Sample CNR actions

15



Transmission congestion reduction

• Line 10 and Line 23 are susceptible to post-contingency congestion

• 6 contingencies lead to Line 10 congestion and 5 Contingencies lead to Line 23 
congestion when CNR was not implemented. 

• With CNR: 

• Scenarios leading to post-contingency congestion were reduced. 

• Line overload reduction of 4% and 24% in Line 10 and Line 23 respectively.

Post-contingency 
congested line
(line number 

[from-bus – to-
bus])

Post-contingency line outage

N-1 SCUC without CNR N-1 SCUC with CNR

10 [6-10] 1 [1-2],2 [1-3],7 [3-24],8 [4-9],9 [5-10],27 [5-24] 2  [1-3]

23 [14-16] 7 [3-24], 18 [11-13],21 [12-13],22 [13-23],27 [5-24] 7 [3-24]

16
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Chapter 2: Summary

• SCUC-CNR utilizes the available system flexibility to meet high demand 
profiles. 

• CNR resulted in fewer line congestion and substantially reduces congestion 
cost.

• CNR offers total cost savings due to alleviation of system congestion.

17
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Chapter 3

Multi-Scenario Stochastic 
Approach to facilitate 

Renewable Energy Sources

18



Part a: Renewable Energy 
Integration (RES)
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𝑀𝑖𝑛:σ𝑔,𝑡 𝑐𝑔
𝑁𝐿𝑢𝑔,𝑡 + 𝑐𝑔

𝑆𝑈𝑣𝑔,𝑡 + σ𝑠 𝜋𝑠𝑐𝑔𝑃𝑔,𝑡,𝑠 +σ𝑤,𝑐,𝑡,𝑠 𝜋𝑠𝑐𝑤
𝑝𝑒𝑛

(𝑃𝑤
𝑚𝑎𝑥 − 𝑃𝑤,𝑐,𝑡,𝑠

• Increased participation of RES to address climate issues requires better algorithm for 
integration in the system.

• Stochastic approach for multi-scenario Renewable Energy Sources (RES): SSCUC-CNR(C)

• Commitment is common for all scenarios but dispatch can vary.

19



Part a: Results

• Increasing RES penetration 
results in lower CO2 emissions.

• Congestion-induced RES 
curtailment in SSCUC leads to 
increased emissions.

• SSCUC-CNR leads to lower 
emissions compared to SSCUC.
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• SSCUC-CNR utilizes transmission 
flexibility to attain lower total 
cost for varying RES penetration. 

• Higher penetration reduces cost.
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Part b: Background

• Energy storage system (ESS) are utilized to address the intermittent nature of RES. But 
ESS may also be distributed in the system.

• Due to favorable location for RES, limited transmission availability and transmission 
congestion can lead to the free RES output curtailment, or it cannot be stored in ESS.

• Network Flexibility through topology reconfiguration can alleviate these issues.

• Technology: We propose a multi-scenario N-1 Stochastic-SCUC (SSCUC) solution 
integrating RES supported by ESS while considering Preventive Network 
Reconfiguration (P) and/or Corrective Network Reconfiguration (C) to achieve 
significant system flexibility.

• Study: Four models were compared; SSCUC, SSCUC-P, SSCUC-C, SSCUC-PC

21



Part b: Results – Cost 
studies

• The transmission flexibility through Preventive and/or Corrective Network 
reconfiguration results in significant economic benefits over Traditional 
SSCUC. 

• SSCUC-P results in greater transmission flexibility than SSCUC-C. However, 
SSCUC-PC leads to maximum system flexibility benefits due to increase in total 
feasibility region.

• Mainly, SSCUC-P, SSCUC-C and SSCUC-PC results in alleviation of congestion 
cost of $ 6,505, $ 2,940 and $ 13,109 over SSCUC, respectively.

SSCUC SSCUC-PNR(P) SSCUC-CNR(C) SSCUC-PNR+CNR(PC)

Total Cost ($) 161,340 154,835 158,400 148,231

Solve time (s) 82.09 260.36 561.67 2500 (Timeout)

Avg. RES  Curtailed (MW) 208 68.25 172.25 45.5

22

System Cost Studies



Chapter 3: Summary

• Network congestion can still lead to RES curtailment and inefficient use of ESS. 

• The cost studies demonstrate substantial cost saving by reducing network 
congestion and utilizing additional free RES output through NR.

• NR strategies, particularly CNR, leads to lower carbon emissions.

• Few reconfiguration strategies are key to addressing system congestion => 
leveraged for scalability to large power systems.

23
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Chapter 4

Computational Improvement: 
Decomposition of SCUC and 
SCUC-CNR
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Issues: Scalability

MIPGAP=0.01 SCUC SCUC
SCUC-
CNR

Total cost ($) 3,224,459 3,224,459 NA

Solve time (s) 12,856 7,743 100,000

Feasibility Feasible Feasible TimeOut

Starting point No Yes Yes

IEEE 73-Bus system solution

• Original SCUC problem is too 
complex.

• Addition of N-1 contingency makes 
the solution more constrained.

• No feasible solution for SCUC-CNR.

25
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Computational Challenges

• Day-ahead scheduling is performed daily.

• SCUC is a large-scale MILP problem for practical systems.

• Challenges:

• Computational complex

• Hard to solve

• Limited computing time

• How to speed up the MILP problems? 

• Decompose the MILP problem in two types (or sets) of 
smaller problems

SCUC

SCUC-CNR

SCUC-PNR

SSCUC-CNR

Technology

C
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m
p

le
xi

ty



Remedy 1: Accelerated Benders’ 
Decomposition (A-SCUC-CNR)

A-SCUC-CNR:
• Accelerated Benders’ decomposition algorithm 

considering three different types of system feasibility 

check sub-problems.

Steps for checking whether system is feasible 

under a given contingency:
• Check CSPS: if system is infeasible, go to PCFC;

• Check PCFC: if system is infeasible, go to NR-PCFC;

• Check NR-PCFC: if system is infeasible, add a 

feasibility cut per PCFC to Master-UC and move on to 

the next contingency.

Sub-problem (contingency scenario) feasibility check:  
⚫ CSPS: check system feasibility with NO adjustment.

⚫ PCFC: Check system feasibility using unit dispatch only.

⚫ NR-PCFC: Check system feasibility using unit dispatch and CNR.
27



Results

Algorithm solve time for various systems 
(24-bus, 73-Bus and Polish 1-h)
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• Previously N-1 SCUC for IEEE 73-Bus system required ~7000 secs with warm start  
now takes only 1273 secs using T-SCUC. 

• Addition of technologies such as CNR increases computational efficiency. T-SCUC-
CNR is faster than T-SCUC.

• Heuristics bring additional time savings and is more significant in larger systems. 
(around 90%).



Results: Scalability

Advantages: 

• Scalability to large Power systems 
networks.

• Significant solve time reduction 
while maintaining same solution 
quality. 

• Accelerations through CSPS achieves 
90% reduction in solve time and  
increases problem scalability.

• A good starting solution can speed 
up the algorithm further.

Parameters T-SCUC-CNR A-SCUC-CNR

Total Cost ($) 5,335,330 5,335,330

Time (s) 59,473.1 6,257.32

MIPGAP 0.1175% 0.1175%

Iterations 2 2

# of cuts 192 192

Results of Polish system for 24-hour period

• Number of buses: 2383 
• Number of Lines: 2895
• Number of generators: 327
• Number of periods: 24 (day-ahead)

29



Chapter 4: Summary

• System flexibility can bring cost savings and increase system reliability.

• Additional complexities when introducing new constraints associated with 
transmission flexibility.

• Optimization based computational enhancement techniques with 
heuristics can address scalability for larger power systems.

• Proposed method performs better as complexity of the system and 
outperforms decomposed SCUC. 

30
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Chapter 5

Computational Benefit: Machine 
Learning aided approach to SCUC
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• One solution: machine learning-assisted SCUC.

• Provide the partial solution.

• Pre-determine a subset of binary variables.

• Reduce the problem size of SCUC.

32

Remedy 2: Machine 
Learning Approach
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Remedy 2: Machine 
Learning
How?
• A supervised learning algorithm trained using historical commitment schedules and provide a predicted 

commitment schedule.
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How is accuracy calculated? 
Accuracy = 100 - np.mean(np.abs(𝑢𝑔𝑡– ෦𝑢𝑔𝑡)) * 100)

where, 𝑢𝑔𝑡 is the actual optimum solutions and ෦𝑢𝑔𝑡 is the 

predicted values from the machine learning algorithm.
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Part a: 
Basic SCUC Model
Objective function

Constraints

𝑃𝑘𝑡 = 𝜃𝑘𝑡/𝑥𝑘 ∀𝑘, 𝑡

−𝑃𝑘
𝑚𝑎𝑥 ≤ 𝑃𝑘𝑡 ≤ 𝑃𝑘

𝑚𝑎𝑥 ∀𝑘, 𝑡



𝑔∈𝐺(𝑛)

𝑃𝑔𝑡 + 

𝑘∈𝐾(𝑛−)

𝑃𝑘𝑡 − 

𝑘∈𝐾 𝑛+

𝑃𝑘𝑡 = 𝑑𝑛𝑡 ∀𝑛, 𝑡

𝑚𝑖𝑛
𝑔∈𝐺


𝑡∈𝑇

(𝑐𝑔𝑃𝑔𝑡 + 𝑐𝑔
𝑁𝐿𝑢𝑔𝑡 + 𝑐𝑔

𝑆𝑈𝑣𝑔𝑡)

𝑃𝑔
𝑚𝑖𝑛𝑢𝑔𝑡 ≤ 𝑃𝑔𝑡 ≤ 𝑃𝑔

𝑚𝑎𝑥𝑢𝑔𝑡 ∀𝑔, 𝑡

𝑣𝑔𝑡 ≥ 𝑢𝑔𝑡 − 𝑢𝑔,𝑡−1 ∀𝑔, 𝑡

𝑣𝑔𝑡 ∈ {0,1} ∀𝑔, 𝑡

𝑢𝑔𝑡 ∈ {0,1} ∀𝑔, 𝑡

−𝑅𝑔
ℎ𝑟 ≤ 𝑃𝑔𝑡 − 𝑃𝑔,𝑡−1 ≤ 𝑅𝑔

ℎ𝑟 ∀𝑔, 𝑡

𝐺𝑒𝑛 𝑠𝑢𝑝𝑝𝑙𝑦 𝑙𝑖𝑚𝑖𝑡𝑠:

𝐺𝑒𝑛 𝐻𝑟 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛:

𝑃𝑜𝑤𝑒𝑟𝑓𝑙𝑜𝑤 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠:

𝑁𝑜𝑑𝑒 𝑏𝑎𝑙𝑎𝑛𝑐𝑒:

𝐵𝑖𝑛𝑎𝑟𝑦 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠:



𝑤=𝑡−𝑈𝑇𝑔+1

𝑡

𝑣𝑔𝑤 ≤ 𝑢𝑔𝑡 ∀𝑔, 𝑡 ≥ 𝑈𝑇𝑔



𝑤=𝑡+1

𝑡+𝐷𝑇𝑔

𝑣𝑔𝑤 ≤ 1 − 𝑢𝑔𝑡 ∀𝑔, 𝑡 ≤ 𝑛𝑇 − 𝐷𝑇𝑔

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑛/𝑜𝑓𝑓 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: (Ignored)



Part a: Case Studies and 
Results

• 5 Test systems of various sizes 
were considered.

• Data was generated for all 
models using the SCUC model.

• ML model was trained for each 
system separately.
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# Buses
Number of Samples Accuracy (%) Training 

time (min)Total Train Test Train Test

24 1,446 1,157 289 98.97 98.96 <1

73 1,391 1,113 278 96.89 96.88 ~8

118 1,500 1,200 300 93.61 93.53 ~5

500 1,499 1,200 299 98.56 98.51 ~17

2383 1,200 960 240 95.94 95.86 ~85

Summary of ML Results

Test Systems

System Gen Capacity (MW) # bus #gen # branch

IEEE 24-Bus System 3,393 24 33 38

IEEE 73-Bus System 10,215 73 99 117

IEEE 118-Bus System 5,859 118 54 186
Synthetic South 

Carolina Grid 500 Bus
12,189 500 90 597

Polish System-
2383 Bus

30,053 2,383 327 2,895

How is accuracy calculated? 

Acc = 1 −
1

𝑚∗𝑁𝑔∗𝑁𝑡


𝑖=1

𝑚

(σ𝑔∈𝐺σ𝑡∈𝑇 𝑢𝑖,𝑔,𝑡 − 𝑢𝑖,𝑔,𝑡
𝑀𝐿 )

*where,𝑢𝑖,𝑔,𝑡 is the actual optimum solutions and 𝑢𝑖,𝑔,𝑡
𝑀𝐿 is the 

predicted values from the machine learning algorithm.



Part a: Solution Procedures

Benchmark methods:

• B1: SCUC that does not utilize any ML outputs 𝑢𝑔,𝑡
𝑀𝐿, in which 𝑢𝑔,𝑡

is solved only through MILP

• B2: R-SCUC (Linear problem – OPF), where Fix 𝑢𝑔,𝑡 = 𝑢𝑔,𝑡
𝑀𝐿 for 

each g and t in R-SCUC.

Proposed Methods:

• P1: R-SCUC (fix On units only), where fix 𝑢𝑔,𝑡 = 1 if 𝑢𝑔,𝑡
𝑀𝐿 = 1. The 

warm-start uses 𝑢𝑔,𝑡 = 0 if 𝑢𝑔,𝑡
𝑀𝐿 = 0. 

• P2: R-SCUC (fix always-on/off units only), where “always 
ON/OFF” generators are identified and fix their status in R-SCUC.
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Verification

For each testing sample (grid profile), if a generator 𝑔 is predicted to be always ON in 24-hour period then fix 𝑢𝑔,𝑡 = 1 for the entire 24-hour 

period for the corresponding generator. Similarly, if generator 𝑔 is always OFF in 24-hour period, then fix 𝑢𝑔,𝑡 = 0 for all periods for the 

corresponding generator. For all other generators, use warm-start 𝑢𝑔,𝑡 = 𝑢𝑔,𝑡
𝑀𝐿. 



Part a: Verification Results

• B1: SCUC (No ML)
• B2: R-SCUC (OPF)
• P1: R-SCUC (fix On-unit only)
• P2: R-SCUC (always ON/OFF)

B1-Normalized computing-time (%)

• Not all samples of B2 are feasible even 
though the accuracy is >93%. 

• On average the infeasibility of test 
samples is ~30% for B2 across all test 
systems.
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• Procedure can be utilized for any type of formulations (deterministic/stochastic/heuristic ect).

• ML cannot directly replace the optimization procedure from B2 since this lead to infeasible
problems. B2 results in 95% computational time saved.

• The proposed post-processing techniques, P1 (fix On-unit only) and P2 (Always ON/OFF), effectively 
utilize the ML predicted outputs without infeasibility.

• Selective use of ML solutions that are high confidence are used to reduce the variables in SCUC. 

• P1 and P2 result in time savings of 50.9% and 38.8%, respectively, on average across all the test 
systems while also resulting in high-quality solutions.
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Part b: Generator Minimum 
On/Off Time Limits

• Generator minimum on/off time limits are ignored so far.

• Now, consider such practical constraints.

• More infeasible cases for R-SCUC even for P1 (fix On-unit only) and P2 (Always 
ON/OFF). 

• Develop a Feasibility Layer (FL)

• A small optimization model: minimize change in 𝑢𝑔,𝑡
𝑀𝐿.

• Adjust 𝑢𝑔,𝑡
𝑀𝐿 if minimum on/off time limits are violated.



𝑤=𝑡−𝑈𝑇𝑔+1

𝑡

𝑣𝑔𝑤 ≤ 𝑢𝑔𝑡 ∀𝑔, 𝑡 ≥ 𝑈𝑇𝑔



𝑤=𝑡+1

𝑡+𝐷𝑇𝑔

𝑣𝑔𝑤 ≤ 1 − 𝑢𝑔𝑡 ∀𝑔, 𝑡 ≤ 𝑛𝑇 − 𝐷𝑇𝑔
Temporal Constraints

• Note: Regenerate data for the new SCUC model.



Updated Machine Learning 
Procedure

ML Prediction
ො𝑦 = 𝑃(𝑦 = 1)

Decision 
boundary (P=0.5)

ML Model 
(LR/DNN)

• Identify two sets of generators for each 
sample of 24 Hour period:

• Always ON/OFF: generators that 
show only one pattern. 

• Flexible: genertors that have turn 
on and off.

• Introduce a Feasibility layer (FL) to verify 
temporal constraints. 

• Only reduce variables that confirm with 
FL, otherwise let optimization figure 
solution online.
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Part b: Verification Results
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Test Systems

MTLR R-SCUC-FL NN R-SCUC-FL

System
IEEE 24-

Bus
IEEE 73-

Bus
IEEE 118-

Bus
SG 500-

Bus
Polish 

2383-Bus

NN
28

(100%)
18

(100%)
4

(100%)
32

(100%)
6

(100%)

LR
4

(100%)
6

(100%)
0

(N/A)
8

(100%)
4

(100%)

• On average across all test systems, 
model reductions with the proposed 
MTLR R-SCUC FL and NN R-SCUC-FL 
resulted in a speed-up 3.6x and 3.4x, 
respectively, when compared with 
SCUC.

• All test problems were feasible due to 
FL.  

• Solution quality maintained well within 
MIPGAP.Elimination of infeasible problems/percentage by FL 



Chapter 5: Summary

• Machine Learning with historical information and post-processing techniques 
can provide high quality solutions while ensuring problem size reduction. 

• Procedure can be utilized for any type of formulations 
(deterministic/stochastic/heuristic ect).

• Problem-size reduction results in significant computational time-savings.

• Feasibility layer eliminates all infeasible problems.
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Chapter 6

Conclusions and Future Work
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Advanced ML models 
(Spatio-temporal)

• Graph neural networks (GNN) for a spatial understanding of data.
• A dynamic Edge conditioned convolution (ECC) layer is utilized as the GNN 

layer. 
• Each GNN layer provides a node embedding w.r.t adjacent nodes and edges.
• Output of node embedding is fed to Long Short-Term Memory (LSTM) layer for 

24 Periods. 

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fully-Connected 
Sigmoid

ECC Conv layer 2
Output Channels: nPrd

ECC Conv layer 2
Output Channels: nPrd

GNN inputs

Node features: 
nNodeXnPrd
Edge Features: 
nEdgesXnEFeat

Output: P(n=1)
nNodesXnPrd

Node Activation: Prelu
Edge Activation: Prelu

Node Activation: Prelu
Edge Activation: Prelu

.

.

.

.

.

.

LSTM Sequence 
length: nPrd
Output Channels: nBus

Activation: Tanh
Recurrent Activation: Sigmoid
Sequence Length: nPrd
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Preliminary Results

Model System Train Acc Val Acc Test Acc

Spatio-Temporal IEEE 24-Bus 98.31 % (↑ 1.15%) 99.50 % 98.40 % (↑ 1.39%)

Deep-NN IEEE 24-Bus 97.16 % NA 97.01 %

Spatio-Temporal IEEE 73-Bus 97.04 % (↑ 1.22%) 97.34 % 97.24 % (↑ 1.59%)

Deep-NN IEEE 73-Bus 95.82 % NA 95.65 %

Spatio-Temporal IEEE 118-Bus 98.96 % (↑ 1.13%) 99.44 % 98.99 % (↑ 1.37%)

Deep-NN IEEE 118-Bus 97.83 % NA 97.62 %

Spatio-Temporal SG 500-Bus 99.80 % (↑ 0.74%) 99.81 % 99.79 % (↑ 0.75%)

Deep-NN SG 500-Bus 99.06 % NA 99.04 %

• Spatio-Temporal model learns 
the relationship better 
compared to Deep-NN (DNN).

• Accuracy 0.75-1.6% increase 
means that many flexible 
generators that were hard to 
identify in NN are realized well 
by a spatio-temporal approach. 

Training Summary
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Verification

System/Model
Infeasible 
cases

Avg Base 
Norm Cost 
(%)

Avg Base 
Norm Time 
saved (%)

IEEE 24-Bus/DNN R-SCUC 0 0 3.92

IEEE 24-Bus/ST R-SCUC 0 0.024 34.29

IEEE 73-Bus/DNN R-SCUC 7 0.12 50.83

IEEE 73-Bus/ST R-SCUC 0 0.034 44.23

IEEE 118-Bus/DNN R-SCUC 4 0.28 38.72

IEEE 118-Bus/ST-SCUC 0 0.001 36.29

SC 500-Bus/DNN R-SCUC 13 0.13 63.72

SC 500-Bus/ST R-SCUC 0 0.062 77.40

• Advanced Spatio-Temporal (ST) model eliminates any infeasibilities in prediction 
without FL. 

• Time saved is better for larger systems.  

• Solution quality is higher with ST R-SCUC when compared with Deep-NN R-SCUC.
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Preliminary Summary

• Spatio-Temporal AI models can learn the geographical and time temporal 
relationship in data leading to better predictions.

• No infeasibilities and therefore does not require a FL. 

• Superior computational-efficiency due to better predictions compared to 
rudimentary ML models. 
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• Spatio-temporal ML model to predict critical lines/highly loaded lines in the 
system to be monitored.

• Reduce redundant constraints in the SCUC.

• Try with other formulations of SCUC.

Future Work

List of Publications
1. Arun Venkatesh Ramesh and Xingpend Li, “Spatio-Temporal AI Approach for Variable 

and Constraint Reduction in Security-Constrained Unit Commitment ”, IEEE 
Transactions in Power Systems. (manuscript under preparation). 



Thesis Conclusion

• System flexibility can bring cost savings and increase system reliability.

• Additional complexities when introducing new constraints associated with 
transmission flexibility.

• Proposed optimization based computational enhancement techniques with 
heuristics utilizing Benders Decomposition can address system flexibility scalability 
for larger power systems.

• ML with historical information and post-processing techniques can provide high 
quality solutions while ensuring problem size reduction and computational efficiency.

• Feasibility Layer can be introduced to verify/modify ML predictions to eliminate 
infeasible solutions in SCUC. 

• Proposed ML based procedures can be utilized with any deterministic/ stochastic/ 
decomposition based SCUC algorithms.

• Advanced ML models can learn the geographical and time temporal relationship in 
data leading to better predictions and superior computational-efficiency  
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