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A power system is an electrical network of interconnected
elements that are used to generate, transmit, and consume
electric power. It contains various types of elements:

e @Generators *  Transformers e  Shunts
e Loads e  Phase shifters e HVDC
e  Transmission lines e  Circuit breakers o NS

f >l >

Transmission g e W
e & Distribution [ [ _ \ _ :
Generation Consumptlon
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Power system management problems can be divided

into a few groups based on time-scale:

5-40 years: power system expansion planning

1-3 years: maintenance scheduling for large equipment, long-
term bilateral contracts, generation capacity commitment

1 day - 1 week: maintenance scheduling for medium and small
equipment; power system operational planning

1 day: day-ahead scheduling (through SCUC) ]

5-30 minutes: contingency analysis, look-ahead dispatching
< 1 minute: system control, frequency regulation, stability

Source: Li, Xingpeng (2022): ECE6327_SmartGrid. figshare. Online resource. https://doi.org/10.6084/m9.figshare.19761268.v1 5
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Day-Ahead Scheduling N T

o Day-ahead scheduling is to determine the ON/OFF status |
of generators for different hourly intervals in the next
operating day to meet the forecasted loads and other
constraints such that the total cost is minimized.

* To efficiently operate the power system, we want least-
cost solutions that maintain system security.

* |n day-ahead scheduling, we solve the optimization
problem: security-constrained unit commitment (SCUC).

 SCUC: MIP, MILP.

* Binary variables are required to represent the on/off status of each unit in

each time interval.

6
Source: Li, Xingpeng (2022): ECE6327_SmartGrid. figshare. Online resource. https://doi.org/10.6084/m9.figshare.19761268.v1
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What is a “Contingency”?

* The loss/failure of a single element or several elements in the
power system.

* Failure of a single element (N-1):

* A generator contingency.
* A branch contingency.

 |nthe U.S., North American Electric Reliability Corporation
(NERC) requires “N-1".

N-1 refers to a system with N components, and N-1 is the system state with a
single component out.

 This rule states that no single outage will result in other components
experiencing flow or voltage limit violations.

 ensure the reliability of the North American bulk power systems
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* Preventive actions are implemented in a prior sense
to avoid a disturbance or contingency in the system.
— De-rate transmission line ratings to leave excess capacity

— Keep generators from producing at their max output
— Reserves to handle uncertainty.

* Corrective actions are implemented after a
disturbance or contingency in the system.

— Generation re-dispatch
— FACTS

— Network Reconfigurations (CN R)} Can be used both as preventive

— Demand Response (CDR). and corrective action.
8
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System Flexibility Benefits
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Traditional approach:
— System flexibility is one-way (top-down)
— Commit more generators.

What are other forms of flexibility in the system?

— Network topology built with redundancy (Meshed
structure)

— Demand flexibility through Demand response

10
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Source: Li, Xingpeng (2022): ECE6327_SmartGrid. figshare. Online resource. https://doi.org/10.6084/m9.figshare.19761268.v1 11
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é/ | about pjm training committees & groups | planning | markets & operations | documents

ntorregional Data e SWitching Solutions

PJM Tools = The following is a list of potential transmission switching procedures identified by PJM that may assist to reduce or eliminate

. transmission system congestion. These identified potential transmission switching procedures may or may not be implemented
Tools Information = by PJM based upon system conditions, either projected or actual, and ultimately are implemented solely at the discretion of PUM
System Requirements and its Transmission Owners. This posting is for informational purposes only. Consequently, PJM does not guarantee that any of
PJM Security these identified switching procedures will be included in any market-based auctions or in the real time analysis. Accordingly, PJM

Bulletin Board expressly disclaims any liability for financial consequences that a Member may incur in taking action in reliance on these
ulletn ooar

informational postings.

Data Miner
eCredit Procedure Title Company 1 Company 2 Action
=DART o To control overloads on the Darrah-Tristate 13BkY line, study opening the Darrah "A" 138kV CB.
Darrah-Tristate switching option AEP If this cannot be done precontingency, issue a PCLLRW with the post contingency switching
eData oo plan.
eDataFeed To control loading on the Ruth-Turner 138kY line, study opening the Turner "I¥ 138kY CB
precontingency. Studies show this provides approximately 40MVYA of relief.
eFTR : If additional relief is required, the following post contingency switching option may be available
Ruth-Turner overload control AEP and provides ~60MVA additional relief:
eGADS LI - [@ Bradley, open the "B" CB. OR
LRS - @ Cabin Creek open "A" & "B” CB's AND @ Kanawha River open “G™ CB
& = : - A PCLLEW will be required if the switching option is only available post contingency.
E P d : i -
mergsney Frocedures g g:}g E::Eztgﬂieuiiznﬁgﬁ\}m AEP Study opening the Phila D' 138kV CB. This will open end the Phila-LR Bladen 138KV line.
eMET o

Source: http://www.pjm.com/markets-and-operations/etools/oasis/system-information/switching-solutions.aspx
12
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Proposed method

Base-case constraints

Post-contingency

constraints

|

Obj: Min z (cgPye + c)luge + c5%v,,)
gt
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Gen limits
Reserve Requirement
Powerflow constraints
Node balance
Hourly ramp-up and ramp-down constraints
Start-Up Constraints
Min-Up/Min-Down Constraints

Depariment of Electiical & Computer Engineering

dn' gt Pkt'

——

»

Ugt) Vgt Tgt

Extensive formulation:
Co-optimize Base-case
constraints and Post-
contingency constraints

A 4

10-Min Gen Ramping for contingency
Post-contingency modelling of line flow
Switching Restriction (reduce disturbance)
Post-contingency node balance

- PgCtl rgctr

Pkct' Zkct

13
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23, 24, 25, 26, 27, 28; 29, 30, n,Bgen I:clle);
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Source: Arun Venkatesh Ramesh and Xingpeng Li, “Security-constrained Unit Commitment with Corrective Transmission Switching,” North Amer&:&n
Power Symposium (NAPS), Wichita, KS, USA, Oct. 2019.
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Total Cost benefits
- N-1 SCUC without CNR | N-1 SCUC with CNR [IRSRSALECERUSRURELTTUEL
congestion cost by 80.33%
m | . | I * Flexibility in the network is

utilized
Cost (S) 932,911 921,812 923,995 921,812
CC($) 11,099 2,183 Sample CNR actions

Switched OFF

CC = TCScenarioI N TCScenariO 11 Outage Line Line

e Scenario |: regular transmission emergency rating ‘7‘ ::

e Scenario ll: infinite transmission emergency rating 8 >
(benchmark) ii :I

15
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| N
Transmission congestion reduction

Post-contingency
congested line

Post-contingency line outage

(line number
[fromt;bUIS) — to- N-1 SCUC without CNR N-1 SCUC with CNR
us

10 [6-10] 1[1-2],2 [1-3],7 [3-24],8 [4-9],9 [5-10],27 [5-24]

23 [14-16] 7 [3-24], 18 [11-13],21 [12-13],22 [13-23],27 [5-24] 7 [3-24]

* Line 10 and Line 23 are susceptible to post-contingency congestion

* 6 contingencies lead to Line 10 congestion and 5 Contingencies lead to Line 23
congestion when CNR was not implemented.

* With CNR:

* Scenarios leading to post-contingency congestion were reduced.

* Line overload reduction of 4% and 24% in Line 10 and Line 23 respectively.
16
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ik IR -
 SCUC-CNR utilizes the available system flexibility to meet high demand
profiles.
* CNRresulted in fewer line congestion and substantially reduces congestion
cost.

* CNR offers total cost savings due to alleviation of system congestion.

List of Publications:

1. Arun Venkatesh Ramesh and Xingpeng Li, “Security-constrained Unit
Commitment with Corrective Transmission Switching,” North American Power
Symposium (NAPS), Wichita, KS, USA, Oct. 2019.

2. Arun Venkatesh Ramesh and Xingpeng Li, “Enhancing System Flexibility
through Corrective Demand Response in Security-Constrained Unit
Commitment” North American Power Symposium, Tempe, AZ, USA, April
2021.

17
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Multi-Scenario Stochastic
Approach to facilitate
Renewable Energy Sources

18



Part a: Renewable Energy
Integration (RES)

ol pen
Min: Zg,t(c._cIJVLug,t + C.guvg,t Ty Zs(ﬂscgpg,t,s)) g Zw,c,t,s(nscw I = Pw,c,t,s)

* |Increased participation of RES to address climate issues requires better algorithm for
integration in the system.

UNIVERSITYof HOUSTON
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» Stochastic approach for multi-scenario Renewable Energy Sources (RES): SSCUC-CNR(C)

Total renewable generation for each scenario

Total RES Output (MW)

Commitment is common for all scenarios but dispatch can vary.

400

350

300

250

200

150

100

50

0

Scnl
Scn2
Scn3
Scn4
Scn5

123456 7 8 910111213 141516 17 18 19 20 21 22 23 24
Time Period (24 Hour)
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Part a: Results

Total cost benefits

280000
260000 =@—SSCUC =@=SSCUC-CNR
240000
< 220000
2 200000
g; 180000
S 160000
140000
120000

100000
15% 30% 50% 60% 80%

Wind Penetration (%)

e SSCUC-CNR utilizes transmission
flexibility to attain lower total

cost for varying RES penetration.
 Higher penetration reduces cost.

UNIVERSITYof HOUSTON
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CO, emission benefits

S 381.1

e SSCUC
350 379.8
e SSCUC-CNR

300
23331 261.32

250

200
156.8

C02 Emissions (x10° 1bs)

150
50% 60% 80% (modified

1
RES Penetration (%) """

Increasing RES penetration
results in lower CO, emissions.

Congestion-induced RES
curtailment in SSCUC leads to
increased emissions.

SSCUC-CNR leads to lower
emissions compared to SSCUC. ,,
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* Energy storage system (ESS) are utilized to address the intermittent nature of RES. But
ESS may also be distributed in the system.

 Due to favorable location for RES, limited transmission availability and transmission
congestion can lead to the free RES output curtailment, or it cannot be stored in ESS.

* Network Flexibility through topology reconfiguration can alleviate these issues.

* Technology: We propose a multi-scenario N-1 Stochastic-SCUC (SSCUC) solution
integrating RES supported by ESS while considering Preventive Network
Reconfiguration (P) and/or Corrective Network Reconfiguration (C) to achieve
significant system flexibility.

e Study: Four models were compared; SSCUC, SSCUC-P, SSCUC-C, SSCUC-PC

21
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System Cost Studies

I T e e T
161,340 154,835 158,400 148,231

82.09 260.36 561.67 2500 (Timeout)
208 68.25 172.25 45.5

* The transmission flexibility through Preventive and/or Corrective Network
reconfiguration results in significant economic benefits over Traditional
SSCUC.

e SSCUC-P results in greater transmission flexibility than SSCUC-C. However,
SSCUC-PC leads to maximum system flexibility benefits due to increase in total
feasibility region.

 Mainly, SSCUC-P, SSCUC-C and SSCUC-PC results in alleviation of congestion
cost of $ 6,505, $ 2,940 and S 13,109 over SSCUC, respectively.

22
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 Network congestion can still lead to RES curtailment and inefficient use of ESS.

* The cost studies demonstrate substantial cost saving by reducing network
congestion and utilizing additional free RES output through NR.

* NR strategies, particularly CNR, leads to lower carbon emissions.

* Few reconfiguration strategies are key to addressing system congestion =>
leveraged for scalability to large power systems.

List of Publications:

1. Arun Venkatesh Ramesh and Xingpeng Li, “Reducing Congestion-Induced
Renewable Curtailment with Corrective Network Reconfiguration in Day-
Ahead Scheduling,” IEEE PES General Meeting, Montreal, Canada, Aug. 2020.

2. Arun Venkatesh Ramesh and Xingpeng Li, “Network Reconfiguration Impact
on Renewable Energy System and Energy Storage System in Day-Ahead
Scheduling” IEEE PES General Meeting, Washington, DC, USA, July 2021. ,;
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Computational Improvement:
Decomposition of SCUC and
SCUC-CNR

24
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IEEE 73-Bus system solution

MIPGAP=0.01 | scuc SCUC eV[ell - Original SCUC problem is too
CNR complex.
A

Total cost ($) 3,224,459 3,224,459 N

e Addition of N-1 contingency makes

i the solution more constrained.
Solve time (s) 12,856 7,743 100,000

* No feasible solution for SCUC-CNR.
Feasibility Feasible  Feasible TimeOut

Starting point No Yes Yes

25
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 Day-ahead scheduling is performed daily.
e SCUC s a large-scale MILP problem for practical systems.

 Challenges:

 Computational complex

SSCUC-CNR

e Hard to solve SCUC-CNR

Complexity

N . s SCUC
 Limited computing time o

Technology

e How to speed up the MILP problems?

e Decompose the MILP problem in two types (or sets) of
smaller problems N



Remedy 1: Accelerated Benders’ RIMIZEWELIIS()
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A-SCUC-CNR:

» Accelerated Benders’ decomposition algorithm

, considering three different types of system feasibility
Master UC check sub-problems.

3

+ Steps for checking whether system is feasible

under a given contingency:

« Check CSPS: if system is infeasible, go to PCFC;

« Check PCFC: if system is infeasible, go to NR-PCFC;

« Check NR-PCFC: if system is infeasible, add a
feasibility cut per PCFC to Master-UC and move on to

the next contingency.

wdd culs
(!
on
=
on
¥
ﬁ
(!
r]
!

Sub-problem (contingency scenario) feasibility check:
o CSPS: check system feasibility with NO adjustment.

o PCFC: Check system feasibility using unit dispatch only.
o NR-PCFC: Check system feasibility using unit dispatch and CNR. =



UNIVERSITYof HOUSTON

R e S u | t S CULLEN COLLEGE of ENGINEERING
Depariment of Electiical & Computer Engineering

Algorithm solve time for various systems
(24-bus, 73-Bus and Polish 1-h)

12000 40,000
—o— T-SCUC w=@==T-SCUC-CNR 10933 B
l = CC Left

30,000

Congestion cost (CC) elimination

10000

==0==A-SCUC-CNR

8000 25,000

® CC reduced with
20,000 CNR
15,000

6000

CCin$

214

Solve time (s)

4000 2649

10,000

2000 392

0 | & e 167
# buses

5,000
I
, NN Y

IEEE 24-Bus IEEE 73-Bus Polish (1-h)

221

* Previously N-1 SCUC for IEEE 73-Bus system required ~7000 secs with warm start
now takes only 1273 secs using T-SCUC.

* Addition of technologies such as CNR increases computational efficiency. T-SCUC-
CNR is faster than T-SCUC.

* Heuristics bring additional time savings and is more significant in larger systems.
(around 90%).

28



UNIVERSITYof HOUSTON

[ ] [ ]
Re S u It S . S Ca I a b | I |t CULLEN COLLEGE of ENGINEERING
C Depariment of Electiical & Computer Engineering

Advantages: Results of Polish system for 24-hour period

T -

Total Cost ($) 5,335,330 5,335,330

» Scalability to large Power systems
networks.

 Significant solve time reduction
while maintaining same solution

quality Time (s) 59,473.1 6,257.32
0.1175% 0.1175%
* Accelerations through CSPS achieves 7 7
N b . :
QOA reduction in solve tlr_n_e and P s 197
increases problem scalability.
* A good starting solution can speed e Number of buses: 2383

the algorithm further.
up the algorithm furtner. e Number of Lines: 2895

* Number of generators: 327
 Number of periods: 24 (day-ahead)

29
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 System flexibility can bring cost savings and increase system reliability.

 Additional complexities when introducing new constraints associated with
transmission flexibility.

 Optimization based computational enhancement techniques with
heuristics can address scalability for larger power systems.

« Proposed method performs better as complexity of the system and
outperforms decomposed SCUC.

List of Publications:

1. Arun Venkatesh Ramesh, Xingpeng Li and Kory Hedman, “An Accelerated-
Decomposition Approach for Security-Constrained Unit Commitment with
Corrective Network Reconfiguration”, in IEEE Transactions on Power
Systems, doi: 10.1109/TPWRS.2021.3098771.

30
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Computational Benefit: Machine
Learning aided approach to SCUC

31
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e One solution: machine learning-assisted SCUC.
* Provide the partial solution.
* Pre-determine a subset of binary variables.

* Reduce the problem size of SCUC.

Constants/Parameters
[ R BB |
X I |
1 ML Step Fl)(((e;d Vzlrlalal;as I |
Scuc . I onstant! 1y . R-SCUC
MILP (Optimize) | 1 I _:J' MILP (Optimize)
7'y Blssty erlils : Flexible Variables I :
L Variable Redugtion |
Continuous Variables
Online Offline Online

32
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How?

* Asupervised learning algorithm trained using historical commitment schedules and provide a predicted
commitment schedule.

—

- — ﬂ Training examples
P (Historical Nodal demand
and respective commitment)

Randomized system demand profile k

—_
(=3
(=}

o
(=}

Learning algorithm

~
. . Entire Period
Entire period . .
Hypothesis commitment
nodal demand
schedule

12345678 9101112131415161718192021222324

Time Period (hours)

23
(=}

P
f=}

W
o ©

System Demand Profile (%)

N
[=}

Training Output vector of probabilities
Wy of output being 1° Vg, t

(i.e. Probability Gen g in time
period t is ON)

Input features:
Nodal demand
vector Vn, t

How is accuracy calculated?
Accuracy = 100 - np.mean(np.abs(ug:—tg;)) * 100)

By, (%) a(hw (X))
@ y=0(h, () =Py =1

where, ug; is the actual optimum solutions and g, is the
predicted values from the machine learning algorithm.

Where, o (t) =

n —le*'-‘ (sigmoid function)

ML
ugt

33
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Objective function
minz z (cgPge + cffuge + c3%vge)
gea teT

Constraints
Gen supply limits:
P"Mug, < Py < P ugy, Vgt

Binary Constraints:
Vgt € {0,1} Vg,t

ug: €{0,1} Vg,t
Power flow constraints: Vgt 2 Uge —Ugr—1 VG, L

Py = 04 /%, VEk,t
kt ke/ Xk Minimum on/of f Constraints: (Ignored)

—P,T“x < Pyt < P,zn“x Vk,t t+Dig
; . o = 7= g
Gen Hr requiremen: -
—RMm<p. —Pp < RM vg,t -
g —=1gt gt-1=1"~g 9,
oV — ro=—Y1g
Node balance: W T

Z Pgt‘l‘ Z Pkt_ Z Pkt:dnt Vn,t
gEG(n) keEK(n-) keK(n+) 34



Part a: Case Studies and

Results

5 Test systems of various sizes
were considered.

Data was generated for all
models using the SCUC model.

ML model was trained for each
system separately.

How is accuracy calculated?

1 m

ML
MmN g+Ny Zi=1(ZgEG ZteT'”i,g,t = ui,g,t')

Acc=1—

*where,u; 4 ; is the actual optimum solutions and u%’jt is the
predicted values from the machine learning algorithm.

UNIVERSITYof HOUSTON
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Test Systems

e Lo
33 38

IEEE 24-Bus System 3,393 24
IEEE 73-Bus System 10,215 73 99 117
IEEE 118-Bus System 5,859 118 54 186
Synthetic South
Carolina Grid 500 Bus 125 A e =
R LS 30,053 2,383 327 2,895

2383 Bus

Summary of ML Results

Number of Samples Accuracy (%) Training
# Buses . .

Total Train Test Train o time (min)

24 1,446 1,157 289 98.97 98.96 <1

73 1,391 1,113 278 96.89 96.88 ~8

11 1,500 1,200 300 93.61 93.53 ~5
1,499 1,200 299 98.56 98.51 ~17
1,200 960 240 95.94 95.86 ~85

35
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Part a: Solution Procedures Eatea s =

Benchmark methods: Verification
*  B1:SCUC that does not utilize any ML outputs ug's, in which u,, -

is solved only through MILP v

. . F ch le:

*  B2:R-SCUC (Linear problem — OPF), where Fix tig; = UJF fOr 1 s respective demand profile

each g and t in R-SCUC. |

Y A Y
o B2 - Only ML Solution Reduced SCUC
=D, L Rl (Linear OPF) P1 and P2

i

Pro posed MethOdS: Solve resultant SCUC: obtain cost
*  P1:R-SCUC (fix On units only), where fixu,, = 1ifugy = 1. The and solve time

gt —
warm-start uses ug, = 0 if ugy = 0.

* P2: R-SCUC (fix always-on/off units only), where “always
ON/OFF” generators are identified and fix their status in R-SCUC.

For each testing sample (grid profile), if a generator g is predicted to be always ON in 24-hour period then fix u; ; = 1 for the entire 24-hour

period for the corresponding generator. Similarly, if generator g is always OFF in 24-hour period, then fix u; ; = 0 for all periods for the

. 36
corresponding generator. For all other generators, use warm-start u, , = ug’tL
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Percentage (%)

Depariment of Electiical & Computer Engineering

B1-Normalized computing-time (%) * B1:SCUC (No ML)
Do i N e B2: R-SCUC (OPF)
5 = e c  P1: R-SCUC (fix On-unit only)

e P2:R-SCUC (always ON/OFF)

610

100 g S
80 2 :3 Q < o
60 o % = 9
i S - * Not all samples of B2 are feasible even
w .
20 °~° = I though the accuracy is >93%.
0 * On average the infeasibility of test
IEEE 24-Bus IEEE 73-Bus IEEE 118-Bus 500 Bus Polish samples is ¥30% for B2 across all test
mBl mPl mP2 mB2 systems.

Procedure can be utilized for any type of formulations (deterministic/stochastic/heuristic ect).

ML cannot directly replace the optimization procedure from B2 since this lead to infeasible
problems. B2 results in 95% computational time saved.

The proposed post-processing techniques, P1 (fix On-unit only) and P2 (Always ON/OFF), effectively
utilize the ML predicted outputs without infeasibility.

Selective use of ML solutions that are high confidence are used to reduce the variables in SCUC.

P1 and P2 result in time savings of 50.9% and 38.8%, respectively, on average across all the test
systems while also resulting in high-quality solutions.
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. Generator minimum on/off time limits are ignored so far.

t+DTy

z Vgw = 1—uy Vg, t <nT — DTy,
Temporal Constraints w=t+1
t

Z Vgw S Uge Vg, t 2 UTy,
w=t-UTg+1

. Note: Regenerate data for the new SCUC model.

. Now, consider such practical constraints.

More infeasible cases for R-SCUC even for P1 (fix On-unit only) and P2 (Always
ON/OFF).

Develop a Feasibility Layer (FL)

*  Asmall optimization model: minimize change in uj'¢.

*  Adjust ug¢ if minimum on/off time limits are violated.
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MLModel |, MLPrediction _[ Decision * Identify two sets of generators for each
(LR/DNN) y=P@y=1) boundary (P=0.5) sample of 24 Hour period:
» Always ON/OFF: generators that
k _1_ il show only one pattern.
|t Lt aways onvorrg * Flexible: genertors that have turn
on and off.
Flexible g P(ug‘?‘ of afla .
If uptt = ulff —— 1 * Introduce a Feasibility layer (FL) to verify
e =il ,
reasibility [y 07 —af e 090 Ll pseuc temporal constraints.
Layer (FL) gt 9t gt

|fu%L=uﬁF : 0.10

* Only reduce variables that confirm with
FL, otherwise let optimization figure
solution online.

fixuge =0 :_0
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80
E’ Zg  On average across all test systems,
o model reductions with the proposed
E 40 MTLR R-SCUC FL and NN R-SCUC-FL
%E 22 14,57 resulted in a speed-up 3.6x and 3.4x,
el . respectively, when compared with
g o SCUC.
IEEE 24-bus IEEE 73-bt-:zstllzi§t:r18;bus SG 500-bus Pollstf)lu25383- . A” test problems s feasible due e
—&— MTLR R-SCUC-FL —&— NN R-SCUC-FL FL
e Solution quality maintained well within
MIPGAP.

Elimination of infeasible problems/percentage by FL

Svetem IEEE 73- IEEE 118- se 500- Polish
Y 2383-Bus

6
(100% (100% (100% (100% (100%)
4 6 0 8 4

LR

(100%)  (100%) (N/A) (100%) (100%)
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o

x

* Machine Learning with historical information and post-processing techniques
can provide high quality solutions while ensuring problem size reduction.

* Procedure can be utilized for any type of formulations
(deterministic/stochastic/heuristic ect).

* Problem-size reduction results in significant computational time-savings.

 Feasibility layer eliminates all infeasible problems.
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2. Arun Venkatesh Ramesh and Xingpeng Li, ““Feasibility Layer Aided Machine Learning

Approach for Day-Ahead Operations”, IEEE Transactions in Power Systems. (Under 2"

Review). -
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Conclusions and Future Work
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Advanced ML models TN

(Spatio-temporal) st e

LSTM Sequence

ECC Conv layer 2 ECC Conv layer 2 length: nPrd
Output Channels: nPrd Output Channels: nPrd  Qutput Channels: nBus sullEsEsie:
Sigmoid

GNN inputs

: Output: P(n=1)
Node features: —_— —_— —_—
nNodeXnPrd nNodesXnPrd
Edge Features:
nEdgesXnEFeat

[

Activation: Tanh
Recurrent Activation: Sigmoid
Sequence Length: nPrd

Node Activation: Prelu  Node Activation: Prelu
Edge Activation: Prelu  Edge Activation: Prelu

* Graph neural networks (GNN) for a spatial understanding of data.

* A dynamic Edge conditioned convolution (ECC) layer is utilized as the GNN
layer.

 Each GNN layer provides a node embedding w.r.t adjacent nodes and edges.

e Qutput of node embedding is fed to Long Short-Term Memory (LSTM) layer for
24 Periods.
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Training Summary

Vodel [wem JmamAc vk Jrestac

T o IEEE 24-Bus | 98.31% (4 1.15%) 99.50% | 98.40% (1" 1.39%)
Deep-NN IEEE 24-Bus  97.16 % NA 97.01% compared to Deepo NN (DNN).
SYTTR T T A IEEE 73-Bus  97.04% (1 1.22%) 97.34%  97.24% (1 1.50%) ° Accuracy 0.75-1.6% increase

Deep-NN IEEE 73-Bus  95.82 % NA 95.65 % means that many flexible
SR em ool i IEEE 118-Bus  98.96 % (1 1.13%) 99.44 % 98.99 % (1 1.37%) generators that were hard to

Deep-NN IEEE 118-Bus 97.83 % NA 97.62 % |dent|fy in NN are realized well

Spatio-Temporal model learns
the relationship better

io- R 0 ) 0 ) ) ]
Spatio-Temporal SG 500-Bus 99.80 % (1~ 0.74%) 99.81 % 99.79 % (1 0.75%) by 3 spatlo-temporal approach.
Deep-NN SG 500-Bus 99.06 % NA 99.04 %
Histogram of predictions (Spatio-Temoporal) Histogram of predictions (Deep-NN)
- AT
v A 3
2] -
w < €
g ¢ ;-
h O 5
N 5 E 3
T £
w e 2
>
z

160

40 B0 80 100 120 140

40 60 8o 100 120 140

Number of wrong predictions in a sample --> Number of wrong predictions in a sample --> 45
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System/Model Norm Cost Norm Time
cases

: : 3.

0 0.024 34.29

7 0.12 50.83

0 0.034 44.23

4 0.28 38.72

0 0.001 36.29

13 0.13 63.72

0 0.062 77.40

* Advanced Spatio-Temporal (ST) model eliminates any infeasibilities in prediction
without FL.

* Time saved is better for larger systems.
* Solution quality is higher with ST R-SCUC when compared with Deep-NN R-SCUC.
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e Spatio-Temporal Al models can learn the geographical and time temporal
relationship in data leading to better predictions.

* Noinfeasibilities and therefore does not require a FL.

e Superior computational-efficiency due to better predictions compared to
rudimentary ML models.

Future Work

 Spatio-temporal ML model to predict critical lines/highly loaded lines in the
system to be monitored.

. Reduce redundant constraints in the SCUC.

e Try with other formulations of SCUC.

List of Publications

1. Arun Venkatesh Ramesh and Xingpend Li, “Spatio-Temporal Al Approach for Variable
and Constraint Reduction in Security-Constrained Unit Commitment ”, IEEE
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. System flexibility can bring cost savings and increase system reliability.

Additional complexities when introducing new constraints associated with
transmission flexibility.

. Proposed optimization based computational enhancement techniques with
heuristics utilizing Benders Decomposition can address system flexibility scalability
for larger power systems.

. ML with historical information and post-processing techniques can provide high
quality solutions while ensuring problem size reduction and computational efficiency.

. Feasibility Layer can be introduced to verify/modify ML predictions to eliminate
infeasible solutions in SCUC.

. Proposed ML based procedures can be utilized with any deterministic/ stochastic/
decomposition based SCUC algorithms.

e  Advanced ML models can learn the geographical and time temporal relationship in
data leading to better predictions and superior computational-efficiency
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