University of Houston

PhD Dissertation Defense

System Flexibility and AI Computational Enhancement for Power System DayAhead Operations

UH RPG Lab
Arun Venkatesh Ramesh
Dec 1st, 2022

Committee Chair:
Xingpeng Li, Ph.D.
Committee Members:
Kaushik Rajashekara, Ph.D. | Harish Krishnamoorthy, Ph.D. | Lei Fan, Ph.D. | Jian Shi, Ph.D.

Contents

- Chapter 1: Introduction and Research Background
- Chapter 2: Technologies to Utilize Existing System Flexibility in Security-Constrained UnitCommitment (SCUC) as Corrective Actions
- Chapter 3: Multi-Scenario Stochastic Approach to facilitate Renewable Energy Sources (RES) with Transmission Flexibility in SCUC
- Chapter 4: Scalability of SCUC and SCUC-CNR through Novel Accelerated-Decomposition Technique
- Chapter 5: Computational Improvements through Machine learning Aided SCUC process
- Chapter 6: Conclusion and Future Work

Chapter 1

UNIVERSITY of HOUSTON

Introduction

Power Systems

A power system is an electrical network of interconnected elements that are used to generate, transmit, and consume electric power. It contains various types of elements:

- Generators
- Loads
- Transmission lines

Generation

- Transformers
- Phase shifters
- Circuit breakers
- Shunts
- HVDC
-

Transmission \& Distribution

Consumption

Power System Management

- Power system management problems can be divided into a few groups based on time-scale:
- 5-40 years: power system expansion planning
- 1-3 years: maintenance scheduling for large equipment, longterm bilateral contracts, generation capacity commitment
- 1 day - 1 week: maintenance scheduling for medium and small equipment; power system operational planning
- 1 day: day-ahead scheduling (through SCUC)
- 5-30 minutes: contingency analysis, look-ahead dispatching
- < 1 minute: system control, frequency regulation, stability

Day-Ahead Scheduling

- Day-ahead scheduling is to determine the ON/OFF status of generators for different hourly intervals in the next operating day to meet the forecasted loads and other constraints such that the total cost is minimized.
- To efficiently operate the power system, we want leastcost solutions that maintain system security.
- In day-ahead scheduling, we solve the optimization problem: security-constrained unit commitment (SCUC).
- SCUC: MIP, MILP.
- Binary variables are required to represent the on/off status of each unit in each time interval.

Contingency

What is a "Contingency"?

- The loss/failure of a single element or several elements in the power system.
- Failure of a single element ($N-1$):
- A generator contingency.
- A branch contingency.
- In the U.S., North American Electric Reliability Corporation (NERC) requires " $N-1$ ".
- $\quad N-1$ refers to a system with N components, and $N-1$ is the system state with a single component out.
- This rule states that no single outage will result in other components experiencing flow or voltage limit violations.
- ensure the reliability of the North American bulk power systems

Preventive and Corrective Actions

- Preventive actions are implemented in a prior sense to avoid a disturbance or contingency in the system.
- De-rate transmission line ratings to leave excess capacity
- Keep generators from producing at their max output
- Reserves to handle uncertainty.
- Corrective actions are implemented after a disturbance or contingency in the system.
- Generation re-dispatch
- FACTS
- Network Reconfigurations (CNR) Can be used both as preventive
- Demand Response (CDR). and corrective action.

Chapter 2

System Flexibility Benefits

Overview

Traditional approach:

- System flexibility is one-way (top-down)
- Commit more generators.

What are other forms of flexibility in the system?

- Network topology built with redundancy (Meshed structure)
- Demand flexibility through Demand response

Power System Diagram

- High-voltage transmission subsystem Meshed network

Industrial Practice: PJM (CNR)

UNIVERSITY of HOUSTON
CULLEN COLLEGE of ENGINEERING
Department of Electrical \& Computer Engineering

*)

Data Dictionary
Interregional Data Map
PJM Tools

System Requirements PJM Security
Bulletin Board
Data Miner
eCredit
eDART
\pm
eData
eDataFeed
eFTR
eGADS
eLRS
Emergency Procedures eMKT

Home * Markets \& Operations * PJM Tools * OASIS • System Information * Switching Solutions

Switching Solutions

The following is a list of potential transmission switching procedures identified by PJM that may assist to reduce or eliminate transmission system congestion. These identified potential transmission switching procedures may or may not be implemented by PJM based upon system conditions, either projected or actual, and ultimately are implemented solely at the discretion of PJM and its Transmission Owners. This posting is for informational purposes only. Consequently, PJM does not guarantee that any of these identified switching procedures will be included in any market-based auctions or in the real time analysis. Accordingly, PJM expressly disclaims any liability for financial consequences that a Member may incur in taking action in reliance on these informational postings.

Procedure Title	Company 1 Company 2

Proposed method

s.t.:

$$
\text { Obj: } \operatorname{Min} \sum_{g, t}\left(c_{g} P_{g t}+c_{g}^{N L} u_{g t}+c_{g}^{S U} v_{g t}\right)
$$

IEEE 24-Bus system

UNIVERSITYof HOUSTON

CULLEN COLLEGE of ENGINEERING
Department of Electrical \& Computer Engineering

- Number of buses: 24
- Number of Lines: 38
- Number of generators: 33
- 24-hour (Day-Ahead) load period

Results

Total Cost benefits

	N-1 SCUC without CNR		N-1 SCUC with CNR	
Scenario	I	II	I	II
Cost (\$)	932,911	921,812	923,995	921,812
CC (\$)	11,099		2,183	

$C C=T C_{\text {Scenario I }}-T C_{\text {Scenario II }}$

- Scenario l: regular transmission emergency rating
- Scenario II: infinite transmission emergency rating (benchmark)
- CNR results in reduction of congestion cost by 80.33\%
- Flexibility in the network is utilized

Sample CNR actions

Outage Line	Switched OFF Line
4	31
7	34
8	5
12	37
17	31
\ldots	\ldots

Results

Transmission congestion reduction

Post-contingency congested line (line number [from-bus - to- bus])	$\mathrm{N}-1$ SCUC without CNR	
	Post-contingency line outage	
$\mathbf{1 0}[6-10]$	$1[1-2], 2[1-3], 7[3-24], 8[4-9], 9[5-10], 27[5-24]$	$2[1-3]$
$23[14-16]$	$7[3-24], 18[11-13], 21[12-13], 22[13-23], 27[5-24]$	$7[3-24]$

- Line 10 and Line 23 are susceptible to post-contingency congestion
- 6 contingencies lead to Line 10 congestion and 5 Contingencies lead to Line 23 congestion when CNR was not implemented.
- With CNR:
- Scenarios leading to post-contingency congestion were reduced.
- Line overload reduction of 4% and 24% in Line 10 and Line 23 respectively.

Chapter 2: Summary

- SCUC-CNR utilizes the available system flexibility to meet high demand profiles.
- CNR resulted in fewer line congestion and substantially reduces congestion cost.
- CNR offers total cost savings due to alleviation of system congestion.

List of Publications:

1. Arun Venkatesh Ramesh and Xingpeng Li, "Security-constrained Unit Commitment with Corrective Transmission Switching," North American Power Symposium (NAPS), Wichita, KS, USA, Oct. 2019.
2. Arun Venkatesh Ramesh and Xingpeng Li, "Enhancing System Flexibility through Corrective Demand Response in Security-Constrained Unit Commitment" North American Power Symposium, Tempe, AZ, USA, April 2021.

Chapter 3

Multi-Scenario Stochastic Approach to facilitate Renewable Energy Sources

Part a: Renewable Energy Integration (RES)

Min: $\sum_{g, t}\left(c_{g}^{N L} u_{g, t}+c_{g}^{S U} v_{g, t}+\sum_{s}\left(\pi_{s} c_{g} P_{g, t, s}\right)\right)+\sum_{w, c, t, s}\left(\pi_{s} c_{w}^{p e n}\left(P_{w}^{\max }-P_{w, c, t, s}\right)\right.$

- Increased participation of RES to address climate issues requires better algorithm for integration in the system.
- Stochastic approach for multi-scenario Renewable Energy Sources (RES): SSCUC-CNR(C)
- Commitment is common for all scenarios but dispatch can vary.

Total renewable generation for each scenario

Average system-wide RES generation for

Part a: Results

Total cost benefits

- SSCUC-CNR utilizes transmission flexibility to attain lower total cost for varying RES penetration.
- Higher penetration reduces cost.

CO_{2} emission benefits

- Increasing RES penetration results in lower CO_{2} emissions.
- Congestion-induced RES curtailment in SSCUC leads to increased emissions.
- SSCUC-CNR leads to lower emissions compared to SSCUC. 20

Part b: Background

- Energy storage system (ESS) are utilized to address the intermittent nature of RES. But ESS may also be distributed in the system.
- Due to favorable location for RES, limited transmission availability and transmission congestion can lead to the free RES output curtailment, or it cannot be stored in ESS.
- Network Flexibility through topology reconfiguration can alleviate these issues.
- Technology: We propose a multi-scenario N-1 Stochastic-SCUC (SSCUC) solution integrating RES supported by ESS while considering Preventive Network Reconfiguration (P) and/or Corrective Network Reconfiguration (C) to achieve significant system flexibility.
- Study: Four models were compared; SSCUC, SSCUC-P, SSCUC-C, SSCUC-PC

Part b: Results - Cost studies

System Cost Studies

	SSCUC	SSCUC-PNR(P)	SSCUC-CNR(C)	SSCUC-PNR+CNR(PC)
Total Cost (\$)	161,340	154,835	158,400	148,231
Solve time (s)	82.09	260.36	561.67	2500 (Timeout)
Avg. RES Curtailed (MW)	208	68.25	172.25	45.5

- The transmission flexibility through Preventive and/or Corrective Network reconfiguration results in significant economic benefits over Traditional SSCUC.
- SSCUC-P results in greater transmission flexibility than SSCUC-C. However, SSCUC-PC leads to maximum system flexibility benefits due to increase in total feasibility region.
- Mainly, SSCUC-P, SSCUC-C and SSCUC-PC results in alleviation of congestion cost of $\$ 6,505, \$ 2,940$ and $\$ 13,109$ over SSCUC, respectively.

Chapter 3: Summary

- Network congestion can still lead to RES curtailment and inefficient use of ESS.
- The cost studies demonstrate substantial cost saving by reducing network congestion and utilizing additional free RES output through NR.
- NR strategies, particularly CNR, leads to lower carbon emissions.
- Few reconfiguration strategies are key to addressing system congestion => leveraged for scalability to large power systems.

List of Publications:

1. Arun Venkatesh Ramesh and Xingpeng Li, "Reducing Congestion-Induced Renewable Curtailment with Corrective Network Reconfiguration in DayAhead Scheduling," IEEE PES General Meeting, Montreal, Canada, Aug. 2020.
2. Arun Venkatesh Ramesh and Xingpeng Li, "Network Reconfiguration Impact on Renewable Energy System and Energy Storage System in Day-Ahead Scheduling" IEEE PES General Meeting, Washington, DC, USA, July 2021. 23

Chapter 4

Computational Improvement:
 Decomposition of SCUC and SCUC-CNR

Issues: Scalability

IEEE 73-Bus system solution

MIPGAP=0.01	SCUC	SCUC	SCUCCNR	- Original SCUC problem is too complex.
Total cost (\$)	3,224,459	3,224,459	NA	
Solve time (s)	12,856	7,743	100,000	the solution more constrained.
Feasibility	Feasible	Feasible	TimeOut	
Starting point	No	Yes	Yes	

Computational Challenges

- Day-ahead scheduling is performed daily.
- SCUC is a large-scale MILP problem for practical systems.
- Challenges:
- Computational complex
- Hard to solve
- Limited computing time

- How to speed up the MILP problems?
- Decompose the MILP problem in two types (or sets) of smaller problems

Remedy 1: Accelerated Benders' Decomposition (A-SCUC-CNR)

A-SCUC-CNR:

- Accelerated Benders' decomposition algorithm considering three different types of system feasibility check sub-problems.

Steps for checking whether system is feasible under a given contingency:

- Check CSPS: if system is infeasible, go to PCFC;
- Check PCFC: if system is infeasible, go to NR-PCFC;
- Check NR-PCFC: if system is infeasible, add a feasibility cut per PCFC to Master-UC and move on to the next contingency.

Sub-problem (contingency scenario) feasibility check:

- CSPS: check system feasibility with NO adjustment.
- PCFC: Check system feasibility using unit dispatch only.
- NR-PCFC: Check system feasibility using unit dispatch and CNR.

Results

UNIVERSITY of HOUSTON

Algorithm solve time for various systems
(24-bus, 73-Bus and Polish 1-h)

Congestion cost (CC) elimination

- Previously $N-1$ SCUC for IEEE 73 -Bus system required ~ 7000 secs with warm start now takes only 1273 secs using T-SCUC.
- Addition of technologies such as CNR increases computational efficiency. T-SCUCCNR is faster than T-SCUC.
- Heuristics bring additional time savings and is more significant in larger systems. (around 90\%).

Results: Scalability

UNIVERSITY of HOUSTON

CULLEN COLLEGE of ENGINEERING
Department of Electical \& Computer Engineering

Advantages:

- Scalability to large Power systems networks.
- Significant solve time reduction while maintaining same solution quality.
- Accelerations through CSPS achieves 90% reduction in solve time and increases problem scalability.
- A good starting solution can speed up the algorithm further.

Results of Polish system for 24-hour period

Parameters	T-SCUC-CNR	A-SCUC-CNR
Total Cost (\$)	$5,335,330$	$5,335,330$
Time (s)	$59,473.1$	$6,257.32$
MIPGAP	0.1175%	0.1175%
Iterations	2	2
\# of cuts	192	192

- Number of buses: 2383
- Number of Lines: 2895
- Number of generators: 327
- Number of periods: 24 (day-ahead)

Chapter 4: Summary

- System flexibility can bring cost savings and increase system reliability.
- Additional complexities when introducing new constraints associated with transmission flexibility.
- Optimization based computational enhancement techniques with heuristics can address scalability for larger power systems.
- Proposed method performs better as complexity of the system and outperforms decomposed SCUC.

List of Publications:

1. Arun Venkatesh Ramesh, Xingpeng Li and Kory Hedman, "An AcceleratedDecomposition Approach for Security-Constrained Unit Commitment with Corrective Network Reconfiguration", in IEEE Transactions on Power Systems, doi: 10.1109/TPWRS.2021.3098771.

Chapter 5

Computational Benefit: Machine Learning aided approach to SCUC

Remedy 2: Machine Learning Approach

- One solution: machine learning-assisted SCUC.
- Provide the partial solution.
- Pre-determine a subset of binary variables.
- Reduce the problem size of SCUC.

Online
Offline
Online

Remedy 2: Machine Learning

UNIVERSITYof HOUSTON

CULLEN COLLEGE of ENGINEERING
Department of Electrical \& Computer Engineering

How?

- A supervised learning algorithm trained using historical commitment schedules and provide a predicted commitment schedule.

How is accuracy calculated?
Accuracy $=100-$ np.mean $\left(\right.$ np.abs $\left.\left.\left(u_{g t}-\widetilde{u_{g t}}\right)\right) * 100\right)$
where, $u_{g t}$ is the actual optimum solutions and $\widetilde{u_{g t}}$ is the predicted values from the machine learning algorithm.

Input features: Nodal demand vector $\forall n, t$

Part a:

Basic SCUC Model

Objective function

$$
\min \sum_{g \in G} \sum_{t \in T}\left(c_{g} P_{g t}+c_{g}^{N L} u_{g t}+c_{g}^{S U} v_{g t}\right)
$$

Constraints

Gen supply limits:
$P_{g}^{\min } u_{g t} \leq P_{g t} \leq P_{g}^{\max } u_{g t} \quad \forall g, t$
Powerflow constraints:
$P_{k t}=\theta_{k t} / x_{k} \quad \forall k, t$
$-P_{k}^{\max } \leq P_{k t} \leq P_{k}^{\max } \quad \forall k, t$
Gen Hr requiremen:
$-R_{g}^{h r} \leq P_{g t}-P_{g, t-1} \leq R_{g}^{h r} \quad \forall g, t$
Node balance:
Binary Constraints:

$$
\begin{aligned}
& v_{g t} \in\{0,1\} \quad \forall g, t \\
& u_{g t} \in\{0,1\} \quad \forall g, t \\
& v_{g t} \geq u_{g t}-u_{g, t-1} \quad \forall g, t
\end{aligned}
$$

Minimum on/off Constraints: (Ignored)

$$
\sum_{g \in G(n)} P_{g t}+\sum_{k \in K(n-)} P_{k t}-\sum_{k \in K(n+)} P_{k t}=d_{n t} \quad \forall n, t
$$

Part a: Case Studies and Results

Test Systems

System	Gen Capacity (MW)	\# bus	\#gen	\# branch
IEEE 24-Bus System	3,393	24	33	38
IEEE 73-Bus System	10,215	73	99	117
IEEE 118-Bus System	5,859	118	54	186
Synthetic South Carolina Grid 500 Bus	12,189	500	90	597
Polish System- 2383 Bus	30,053	2,383	327	2,895

Summary of ML Results

How is accuracy calculated?

Acc $=1-\frac{1}{m * N_{g} * N_{t}} \sum_{i=1}^{m}\left(\sum_{g \in G} \sum_{t \in T}\left|u_{i, g, t}-u_{i, g, t}^{M L}\right|\right)$
*where, $u_{i, g, t}$ is the actual optimum solutions and $u_{i, g, t}^{M L}$ is the predicted values from the machine learning algorithm.

\# Buses	Number of Samples			Accuracy (\%)		Training time (min)
	Total	Train	Test	Train	Test	
24	1,446	1,157	289	98.97	98.96	<1
73	1,391	1,113	278	96.89	96.88	~ 8
118	1,500	1,200	300	93.61	93.53	~ 5
500	1,499	1,200	299	98.56	98.51	~ 17
2383	1,200	960	240	95.94	95.86	~85

Part a: Solution Procedures

UNIVERSITY of HOUSTON

Benchmark methods:

- P2: R-SCUC (fix always-on/off units only), where "always ON/OFF" generators are identified and fix their status in R-SCUC.

For each testing sample (grid profile), if a generator g is predicted to be always ON in 24 -hour period then fix $u_{g, t}=1$ for the entire 24 -hour period for the corresponding generator. Similarly, if generator g is always OFF in 24 -hour period, then fix $u_{g, t}=0$ for all periods for the corresponding generator. For all other generators, use warm-start $u_{g, t}=u_{g, t}^{M L}$.

Part a: Verification Results

- B1: SCUC (No ML)
- B2: R-SCUC (OPF)
- P1: R-SCUC (fix On-unit only)
- P2: R-SCUC (always ON/OFF)
- Not all samples of B2 are feasible even though the accuracy is $>93 \%$.
- On average the infeasibility of test samples is $\sim 30 \%$ for B2 across all test systems.
- Procedure can be utilized for any type of formulations (deterministic/stochastic/heuristic ect).
- ML cannot directly replace the optimization procedure from B2 since this lead to infeasible problems. B2 results in 95\% computational time saved.
- The proposed post-processing techniques, $P 1$ (fix On-unit only) and $P 2$ (Always ON/OFF), effectively utilize the ML predicted outputs without infeasibility.
- Selective use of ML solutions that are high confidence are used to reduce the variables in SCUC.
- $\quad P 1$ and $P 2$ result in time savings of 50.9% and 38.8%, respectively, on average across all the test systems while also resulting in high-quality solutions.

Part b: Generator Minimum On/Off Time Limits

- Generator minimum on/off time limits are ignored so far.

Temporal Constraints

$$
\begin{aligned}
& \sum_{w=t+1}^{t+D T_{g}} v_{g w} \leq 1-u_{g t} \quad \forall g, t \leq n T-D T_{g} \\
& \sum_{w=t-U T_{g}+1}^{t} v_{g w} \leq u_{g t} \quad \forall g, t \geq U T_{g}
\end{aligned}
$$

- Note: Regenerate data for the new SCUC model.
- Now, consider such practical constraints.
- More infeasible cases for R-SCUC even for P1 (fix On-unit only) and P2 (Always ON/OFF).
- Develop a Feasibility Layer (FL)
- A small optimization model: minimize change in $u_{g, t}^{M L}$.
- Adjust $u_{g, t}^{M L}$ if minimum on/off time limits are violated.

Updated Machine Learning Procedure

- Identify two sets of generators for each sample of 24 Hour period:
- Always ON/OFF: generators that show only one pattern.
- Flexible: genertors that have turn on and off.
- Introduce a Feasibility layer (FL) to verify temporal constraints.
- Only reduce variables that confirm with FL, otherwise let optimization figure solution online.

Part b: Verification Results

UNIVERSITY of HOUSTON

Elimination of infeasible problems/percentage by FL

System	IEEE 24- Bus	IEEE 73- Bus	IEEE 118- Bus	SG 500- Bus	Polish 2383-Bus
NN	28 (100%)	18 (100%)	4 (100%)	32 (100%)	6 (100%)
LR	4 (100%)	6 (100%)	0 (N / A)	8 (100%)	4

- On average across all test systems, model reductions with the proposed MTLR R-SCUC FL and NN R-SCUC-FL resulted in a speed-up 3.6x and 3.4x, respectively, when compared with SCUC.
- All test problems were feasible due to FL.
- Solution quality maintained well within MIPGAP.

Chapter 5: Summary

- Machine Learning with historical information and post-processing techniques can provide high quality solutions while ensuring problem size reduction.
- Procedure can be utilized for any type of formulations (deterministic/stochastic/heuristic ect).
- Problem-size reduction results in significant computational time-savings.
- Feasibility layer eliminates all infeasible problems.

List of Publications:

1. Arun Venkatesh Ramesh and Xingpeng Li, "Machine Learning Assisted Model Reduction for Security-Constrained Unit Commitment", North American Power Symposium, Salt Lake, UT.
2. Arun Venkatesh Ramesh and Xingpeng Li, ""Feasibility Layer Aided Machine Learning Approach for Day-Ahead Operations", IEEE Transactions in Power Systems. (Under 2 ${ }^{\text {nd }}$ Review).

List of Publications

1. Arun Venkatesh Ramesh and Xingpeng Li, "Machine Learning Assisted Model Reduction for Security-Constrained Unit Commitment", North American Power Symposium, Salt Lake, UT.
2. Arun Venkatesh Ramesh and Xingpeng Li, ""Feasibility Layer Aided Machine Learning Approach for Day-Ahead Operations", IEEE Transactions in Power Systems. (Under 2 ${ }^{\text {nd }}$ Review).
3. Arun Venkatesh Ramesh and Xingpend Li, "Spatio-Temporal AI Approach for Variable and Constraint Reduction in Security-Constrained Unit Commitment ", IEEE Transactions in Power Systems. (Journal manuscript under preparation).

Chapter 6

Conclusions and Future Work

Advanced ML models (Spatio-temporal)

- Graph neural networks (GNN) for a spatial understanding of data.
- A dynamic Edge conditioned convolution (ECC) layer is utilized as the GNN layer.
- Each GNN layer provides a node embedding w.r.t adjacent nodes and edges.
- Output of node embedding is fed to Long Short-Term Memory (LSTM) layer for 24 Periods.

Preliminary Results

Training Summary

Model	System	Train Acc	Val Acc	Test Acc
Spatio-Temporal	IEEE 24-Bus	98.31 ((\uparrow 1.15\%)	99.50 \%	98.40 \% (\uparrow 1.39\%)
Deep-NN	IEEE 24-Bus	97.16 \%	NA	97.01 \%
Spatio-Temporal	IEEE 73-Bus	97.04 \% (\uparrow 1.22\%)	97.34 \%	97.24 (\uparrow 1.59\%)
Deep-NN	IEEE 73-Bus	95.82 \%	NA	95.65 \%
Spatio-Temporal	IEEE 118-Bus	98.96 \% ($\uparrow 1.13 \%)$	99.44 \%	98.99 \% (\uparrow 1.37\%)
Deep-NN	IEEE 118-Bus	97.83 \%	NA	97.62 \%
Spatio-Temporal	SG 500-Bus	99.80 \% (\uparrow 0.74\%)	99.81 \%	99.79 \% (\uparrow 0.75\%)
Deep-NN	SG 500-Bus	99.06 \%	NA	99.04 \%

- Spatio-Temporal model learns the relationship better compared to Deep-NN (DNN).
- Accuracy 0.75-1.6\% increase means that many flexible generators that were hard to identify in NN are realized well by a spatio-temporal approach.

Number of wrong predictions in a sample -->

Histogram of predictions (Deep-NN)

Number of wrong predictions in a sample -->

Verification

System/Model	Infeasible cases	Avg Base Norm Cost $(\%)$	Avg Base Norm Time saved (\%)
IEEE 24-Bus/DNN R-SCUC	0	0	3.92
IEEE 24-Bus/ST R-SCUC	0	0.024	34.29
IEEE 73-Bus/DNN R-SCUC	7	0.12	50.83
IEEE 73-Bus/ST R-SCUC	0	0.034	44.23
IEEE 118-Bus/DNN R-SCUC	4	0.28	38.72
IEEE 118-Bus/ST-SCUC	0	0.001	36.29
SC 500-Bus/DNN R-SCUC	13	0.13	63.72
SC 500-Bus/ST R-SCUC	0	0.062	77.40

- Advanced Spatio-Temporal (ST) model eliminates any infeasibilities in prediction without FL.
- Time saved is better for larger systems.
- Solution quality is higher with ST R-SCUC when compared with Deep-NN R-SCUC.

Preliminary Summary

- Spatio-Temporal AI models can learn the geographical and time temporal relationship in data leading to better predictions.
- No infeasibilities and therefore does not require a FL.
- Superior computational-efficiency due to better predictions compared to rudimentary ML models.

Future Work

- Spatio-temporal ML model to predict critical lines/highly loaded lines in the system to be monitored.
- Reduce redundant constraints in the SCUC.
- Try with other formulations of SCUC.

List of Publications

1. Arun Venkatesh Ramesh and Xingpend Li, "Spatio-Temporal AI Approach for Variable and Constraint Reduction in Security-Constrained Unit Commitment ", IEEE Transactions in Power Systems. (manuscript under preparation).

Thesis Conclusion

- System flexibility can bring cost savings and increase system reliability.
- Additional complexities when introducing new constraints associated with transmission flexibility.
- Proposed optimization based computational enhancement techniques with heuristics utilizing Benders Decomposition can address system flexibility scalability for larger power systems.
- ML with historical information and post-processing techniques can provide high quality solutions while ensuring problem size reduction and computational efficiency.
- Feasibility Layer can be introduced to verify/modify ML predictions to eliminate infeasible solutions in SCUC.
- Proposed ML based procedures can be utilized with any deterministic/ stochastic/ decomposition based SCUC algorithms.
- Advanced ML models can learn the geographical and time temporal relationship in data leading to better predictions and superior computational-efficiency

Comprehensive List of Publications:

1. Arun Venkatesh Ramesh and Xingpeng Li, "Security-constrained Unit Commitment with Corrective Transmission Switching," North American Power Symposium (NAPS), Wichita, KS, USA, Oct. 2019.
2. Arun Venkatesh Ramesh and Xingpeng Li, "Enhancing System Flexibility through Corrective Demand Response in Security-Constrained Unit Commitment" North American Power Symposium, Tempe, AZ, USA, April 2021.
3. Mingjian Tuo, Arun Venkatesh Ramesh and Xingpeng Li, "Benefits and Cyber-Vulnerability of Demand Response System in Real-Time Grid Operations", 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), 2020
4. Arun Venkatesh Ramesh and Xingpeng Li, "Reducing Congestion-Induced Renewable Curtailment with Corrective Network Reconfiguration in Day-Ahead Scheduling," IEEE PES General Meeting, Montreal, Canada, Aug. 2020.
5. Arun Venkatesh Ramesh and Xingpeng Li, "Network Reconfiguration Impact on Renewable Energy System and Energy Storage System in Day-Ahead Scheduling" IEEE PES General Meeting, Washington, DC, USA, July 2021.
6. Arun Venkatesh Ramesh, Xingpeng Li and Kory Hedman, "An Accelerated-Decomposition Approach for SecurityConstrained Unit Commitment with Corrective Network Reconfiguration", in IEEE Transactions on Power Systems, doi: 10.1109/TPWRS.2021.3098771
7. Arun Venkatesh Ramesh and Xingpeng Li, "Machine Learning Assisted Model Reduction for SecurityConstrained Unit Commitment", North American Power Symposium, Salt Lake, UT.
8. Arun Venkatesh Ramesh and Xingpeng Li, ""Feasibility Layer Aided Machine Learning Approach for Day-Ahead Operations", IEEE Transactions in Power Systems. (Under 2 ${ }^{\text {nd }}$ Review).
9. Arun Venkatesh Ramesh and Xingpend Li, "Spatio-Temporal AI Approach for Variable and Constraint Reduction in Security-Constrained Unit Commitment ", IEEE Transactions in Power Systems. (Journal manuscript under preparation).

UNIVERSITY of HOUSTON

CULLEN COLLEGE of ENGINEERING
Department of Electrical \& Computer Engineering

Thank you

