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ABSTRACT 

Smart grids play a critical part in today’s world and is paramount to optimize 

the usage of energy and to address the increasing penetration of renewable energy 

sources (RES). The power system is a complicated network of electrical elements and 

requires efficient operation. The day-ahead operations use the security-constrained unit-

commitment (SCUC) to provide a reliable, secure, and least-cost solution while clearing 

the market for forecasted demand. However, existing power system operations do not 

use available system flexibility in the form of transmission network or demand response 

exhaustively. Operators rely on experience to use these resources and disregard the 

economic benefit of such technologies. Hence, the importance of strategies such as 

corrective network reconfiguration (CNR) and corrective demand response (CDR) as 

an economic tool are initially explored.  

Network reconfiguration is considered for superior economic incentive. In 

addition, it enables integration of RES, efficient utilization of energy storage, and 

reducing carbon emission in high penetration systems. This is implemented by reducing 

curtailment of RES and relieving system congestion, while also addressing reducing 

carbon emissions. However, due to the complexity added to existing SCUC model, such 

solutions are not scalable to practical systems.  

To address computational efficiency to SCUC, considering substantial economic 

incentive tools like CNR, two novel remedies are identified in this thesis: 
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(1) A purely optimization-based technique is shown by utilizing benders 

decomposition by breaking a large SCUC model into master problem and sub-

problems. The proposed approach is iteratively solved by effectively screening 

non-critical sub-problems to handle the computational complexity. Simulation 

results points to scalability to large practical power system networks. 

(2) A novel approach by leveraging machine learning (ML) to learn patterns between 

system demand profile and generator commitment schedule using historical 

information is developed. The ML would assist with innovative post-processing 

methods and create a feasibility layer to improve predictions that would result in 

a reduced model for problem size reduction of SCUC. The proposed approach 

with selective utilizing of ML predictions can bring substantial computational 

benefits. This is achieved without loss in solution quality while being easily 

extendible to any decomposed, heuristic, or sped-up algorithms for SCUC.  
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NOMENCLATURE 

 Sets and indices: 

g Generator index. 

k Transmission element (line or transformer) index. 

t Time period index. 

n Bus index. 

c Line contingency index. 

𝐶 Set of non-radial transmission contingencies. 

𝑒(𝑛) Set of ESS connected to bus n. 

𝐺 Set of generators. 

𝐺𝑐 Set of all generator contingencies. 

𝑔(𝑛) Set of generators connecting bus n. 

𝐾 Set of all transmission element. 

𝐾𝑐 Set of all non-radial line contingencies. 

𝑀 Total samples. 

𝑀𝑡𝑒𝑠𝑡 Test Samples. 

𝑀𝑡𝑟𝑎𝑖𝑛 Training Samples. 

𝑁 Set of all buses. 

𝑁(𝑔) Bus location of generator g. 

𝑇 Set of Time intervals. 

𝑊 Set of renewable units. 

𝑤(𝑛) Set of RES units connected to bus n. 

𝛿+(𝑛) Set of lines with bus n as receiving bus. 

𝛿−(𝑛) Set of lines with bus n as sending bus. 

Ω𝑐𝑟𝑖 Set of all critical sub-problems. 

Ω1
𝑖𝑛𝑓

 Set of infeasible PCFC sub-problems. 
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Ω2
𝑖𝑛𝑓

 Set of infeasible NR-PCFC sub-problems. 

𝜓 Cut-set determined for all sub-problems. 

  

 Parameters: 

𝑏𝑘 Susceptance of line k. 

𝑐𝑔 Linear cost for generator g. 

𝑐𝑔
𝑁𝐿 No-load cost for generator g. 

𝑐𝑔
𝑆𝑈 Start-up cost for generator g. 

𝑐𝑛
𝐶𝑡𝑔

 Cost of CDR at bus n.  

𝑐𝑤
𝑝𝑒𝑛

 Penalty for energy curtailed for RES w. 

𝑑𝑛,𝑡 Predicted demand of bus n in time period t. 

𝑑𝑛,𝑡
𝑚  Predicted demand of bus n in time period t for generated sample m. 

𝑑𝑛,𝑡
𝑖𝑛𝑖 Initial nodal demand of bus n in time period t for a test system. 

𝐷𝑇𝑔 Minimum down time for generator g. 

𝐸𝑆𝑆𝑒
𝑚𝑎𝑥 Maximum energy capacity of ESS e. 

𝑀 A big real number. 

𝑃𝑔
𝑚𝑖𝑛 Minimum capacity of generator g. 

𝑃𝑔
𝑚𝑎𝑥 Maximum capacity of generator g. 

𝑃𝑘
𝑚𝑎𝑥 Long-term thermal line limit for line k. 

𝑃𝑘
𝑒𝑚𝑎𝑥 Emergency thermal line limit for line k.  

𝑃𝑚𝑎𝑥𝑒
𝑐ℎ𝑎 Maximum charging power for ESS e. 

𝑃𝑚𝑎𝑥𝑒
𝑑𝑖𝑠 Maximum discharging power for ESS e. 

𝑃𝑤,𝑠
𝑚𝑎𝑥 Maximum capacity of RES w in scenario s. 

𝑅𝑔
ℎ𝑟 Regular hourly ramping limit of generator g.  

𝑅𝑔
𝑆𝑈 Start-up ramping limit of generator g. 
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𝑅𝑔
𝑆𝐷 Shut-down ramping limit of generator g. 

𝑅𝑔
10 10-minute outage ramping limit of generator g. 

𝑅𝑚𝑎𝑥𝑒
𝑐ℎ𝑎 Rate of charging for ESS e. 

𝑅𝑚𝑎𝑥𝑒
𝑑𝑖𝑠 Rate of discharging for ESS e. 

𝑆𝑂𝐶𝑒
𝑚𝑎𝑥 Maximum state of charge in percentage of ESS e. 

𝑆𝑂𝐶𝑒
𝑚𝑖𝑛 Minimum State of charge in percentage of ESS e. 

𝑈𝑇𝑔 Minimum up time for generator g. 

𝑈𝑚,𝑔,𝑡
𝑀𝐿  

Machine learning predicted commitment status for generator g in 

period t for sample m. 

𝑍𝑚𝑎𝑥  The maximum number of transmission elements that are allowed to 

switch off in each period. 

𝜋𝑠 Known probability of RES scenario s. 

  

 Variables: 

𝐶𝐷𝑅𝑛,𝑐,𝑡 
Corrective demand response action at bus n in period t for 

contingency c 

𝐹𝑘,𝑐,𝑡
+ , 𝐹𝑘,𝑐,𝑡

−  Dual variables of line k’s contingent max and min limit constraints 

for contingency c and period t. 

𝐸𝑒,𝑐,𝑡,𝑠 Energy level in ESS e in period t and scenario s after outage of line 

c. 

𝐸𝑒,𝑡,𝑠 Energy level in ESS e in period t and scenario s 

𝑃𝑒,𝑐,𝑡,𝑠
𝑐ℎ𝑎  Charge power in ESS e in period t and scenario s after outage of 

line c. 

𝑃𝑒,𝑡,𝑠
𝑐ℎ𝑎 Charge power in ESS e in period t and scenario s 

𝑃𝑒,𝑐,𝑡,𝑠
𝑑𝑖𝑠  Discharge power in ESS e in period t and scenario s after outage of 

line c. 
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𝑃𝑒,𝑡,𝑠
𝑑𝑖𝑠  Discharge power in ESS in period t and scenario s. 

𝑃𝑔,𝑡 Output of generator g in time period t. 

𝑃𝑔,𝑡
𝑀𝑈𝐶  Output of generator g in period t obtained from MUC. 

𝑃𝑔,𝑡,𝑠 Output of generator g in time period t and scenario s. 

𝑃𝑔,𝑐,𝑡,𝑠 Output of generator g in time period t and scenario s after outage of 

line c  

𝑃𝑘,𝑡 Lineflow of line k in time period t. 

𝑃𝑘,𝑡,𝑠 Lineflow of line k in time period t and scenario s. 

𝑃𝑘,𝑡
𝑀𝑈𝐶  Lineflow of line k in time period t obtained from MUC. 

𝑃𝑘,𝑐,𝑡 Flow in line k in period t after outage of line c. 

𝑃𝑘,𝑐,𝑡,𝑠 Line flow of line k in time period t and scenario s after outage of line 

c 

𝑃𝑤,𝑡,𝑠 RES w output in time period t and scenario s.  

𝑃𝑤,𝑐,𝑡,𝑠 Output of RES w in time period t and scenario s after outage of line 

c 

𝑟𝑔,𝑡 Reserve from generator g in time period t. 

𝑟𝑔,𝑡,𝑠 Reserve from generator g in time period t. 

𝑢𝑔,𝑡 Commitment status of generator g in time period t. 

𝑢𝑔,𝑡
𝑀𝑈𝐶  Generator g status in period t obtained from MUC. 

𝑢𝑔,𝑡
𝑚  

Commitment status of generator g in time period t for generated 

sample m. 

𝑢𝑔,𝑡
𝑑𝑛 

Commitment status turned OFF from ON by feasibility layer for 

generator g in period t. 

𝑢𝑚,𝑔,𝑡
𝑀𝐹  

Feasibility layer processed commitment status for generator g in 

period t for sample m. 
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𝑢𝑔,𝑡
𝑢𝑝

 
Commitment status turned ON from OFF by feasibility layer for 

generator g in period t. 

𝑣𝑔,𝑡 Start-up variable of generator g in time period t. 

𝑣𝑔,𝑡
𝑀𝑈𝐶  Generator g start-up in period t obtained from MUC. 

𝑣𝑚,𝑔,𝑡
𝑀𝐹  

Feasibility layer processed start-up status for generator g in period t 

for sample m. 

𝑆𝑘,𝑐,𝑡 Dual variable of line k’s contingent power flow constraint for 

contingency c and period t. 

𝑧𝑐,𝑡
𝑘  Line status variable of line k after outage of line c in time period t. 

𝑧𝑐,𝑡,𝑠
𝑘  Line status variable of line k after outage of line c in time period t 

for scenario s. 

𝑧𝑘,𝑐,𝑡,𝑠
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1. INTRODUCTION 

1.1. Background and motivation 

Several national level directives in recent years stress on decarbonization to 

reduce emissions and battle climate change. This means retirement of carbon-based 

coal plants and increased investments in renewable energy portfolios. With the influx 

of renewable technologies and distributed generation, more advanced technologies are 

required to handle the unpredictability while ensuring system reliability. The resulting 

transfer of power is bi-directional, whereas traditional system was operated under the 

assumption that power is transferred from top-to-bottom, generation to consumption. 

Also, the expected increase in electric vehicles also changes the demand curve as they 

replace fossil-based cars to grid loads. The demand side also experiences significant 

changes over the years with increased demand patterns and addressing needs in 

uncertain situations such as weather anomalies etc. 

Energy storage in the form of batteries is a form of flexibility to address these 

uncertainties, however it is still nascent and is not widely available. Another factor to 

consider is the high initial cost of energy storage, which requires optimal usage in the 

shorter term to perform price arbitrage while meeting system reliability standards. The 

long-term battery life depreciation by limiting cycles of operation or depth of discharge 

also needs to be considered. However, reliable storage exists in traditional systems in 

the form of hydropower which also requires optimal planning to maintain reservoir 
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level. Therefore, these complexities stress the importance of developing a smarter 

electrical grid which encompasses all the suite of technologies where the individual 

equipment operations can be optimally performed. Not only that, leveraging any 

existing system flexibility in the form network reconfiguration or demand response 

actions can address congestion in the network to lower the cost and increase reliability. 

Hence, the development of smarter algorithms is required to utilize the existing and 

future portfolio of power system equipment flexibly, efficiently, and reliably.  

1.2. Operational Horizons 

The power system operational and planning falls under the several time 

horizons. These time horizons provide guidelines for operations, the need of short-term 

planning, the need of the long-term maintenance, and for expansion. They can be 

broadly categorized in the following horizons:  

• 5–40 years: power system expansion planning. 

• 1–3 years: maintenance scheduling for large equipment, long-term bilateral 

contracts, generation capacity commitment. 

• 1 day–1 week: maintenance scheduling for medium and small equipment; 

power system operational planning. 

• 1 day: day-ahead scheduling. 

• 5–30 minutes: contingency analysis, look-ahead dispatching. 

• < 1 minute: system control, frequency regulation, stability. 
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From the above, the short-term operations based on the time period is 

implemented with day-ahead (24 hours), real-time (5–30 minutes), and regulation (<1 

min) horizons. Fig. 1.1 shows the California independent system operator(ISO) 

timelines for short-term operation.  

 

Fig. 1.1 California independent system operator short-term timeline [1]. 

1.3. Day-ahead markets 

In the United States, the wholesale energy market is a look-ahead market and 

consists of day-ahead and real-time markets. Every day, the Independent system 

operators (ISOs) collect bids from generators and utilities. Following this, ISOs solve 

the Day-ahead markets (DAM) to provide the optimal commitment schedules and 

dispatch of generators to meet the predicted load for each hour of the next day. To 
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ensure reliability, the North American Electric Reliability Corporation (NERC) sets 

several standards for the ISOs to comply. Among them, the day-ahead solution must 

be N-1 compliant which implies that the system solution should be capable to handle a 

disturbance such as a line or a generator outage contingency [2]. This is handled by 

committing extra generators to support the system in the case of contingencies and 

maintaining reserve adequacy to handle an emergency. 

DAM clears the bids and provides the least-cost solution of hourly generator 

commitment and dispatch for the bid-cleared demand. Typical time frame of DAM 

covers a period of 24 hours, from 00:00 am to 11:59 pm The SCUC requires several 

inputs such as load bids, generator offers, virtual bids, bilateral schedule, and self-

scheduling as shown in Fig. 1.2. In addition, the network topology and parameters are 

required to optimize the system for a least-cost reliable commitment and dispatch 

solution based on a common-pricing model. The SCUC clears almost 93%–97% of the 

demand [3]–[6], following which a reliability unit commitment (RUC) is performed for 

meeting the forecasted loads.  

Contingency analysis (CA), which is a sequence of power flow runs under 

different element outages, is performed by eliminating one element from the system at 

a time to identify any system violations for the day-ahead solution. If the CA fails, then 

an out of market correction is performed by committing additional generators and re-

dispatching generators. The out of market correction is performed until all known 

violations are eliminated. 
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Fig. 1.2 ISO day-ahead market practice. 

1.4. Industry Practices 

California ISO’s DAM that collects bids for energy, ancillary services, 

reliability unit availability, self-scheduling, and virtual energy bids are open seven days 

prior to the operating day and closes for bids by 10:00 am on the day prior to the 

operating day. Once the bids are obtained, the DAM begins with market power 

mitigation to identify non-competitive constraints for energy bids. Following this, the 

integrated forward market will clear the bids using SCUC and the RUC is used to 

procure additional capacity for reliability. The results for the next operational day are 

posted by 13:00 pm [7].  
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New York ISO closes the DAM for bids by 05:00 am the day prior to the 

operational day. The load forecast is posted by 08:00 am and the generator schedules 

are determined by clearing the energy bids and posted by 11:00 am [8].  

Midwest ISO’s (MISO) DAM implements a co-optimized SCUC for energy 

offers and regulating reserves between 10:00 am–13:30 pm. MISO’s DAM determines 

the commitment for about 1,500 resources totaling ~177,760 MW capacity, and the 

peak load is of ~127,125 MW [9]. After the SCUC, a rebidding is performed at 14:00 

pm to run a simultaneously co-optimized security-constrained economic dispatch 

(SCED) for ancillary services and clearing energy prices [10]. 

ISO New England (ISO-NE) collects market inputs by 10:00 am and the results 

are posted by 13:30 pm, which publishes the generator schedules, locational marginal 

prices (LMP) and binding constraints. ISO-NE’s network consists of more than 1,000 

price nodes where LMPs are calculated. The reliability of the commitment schedule is 

verified using a contingency analysis embedded simultaneous feasibility test to identify 

out-of-merit dispatches [11]. 

The Energy Reliability Council of Texas (ERCOT) begins DAM at 06:00 am 

and ends by 18:00 pm. The information related to DAM is obtained by 06:00 am. Then, 

ERCOT performs pre-market activities. The DAM clears the SCUC between 10:00 am 

–13:30 pm. Once the results for the DAM are obtained for the next operation day, the 

RUC begins at 14:30 pm to commit additional units by considering more accurate 
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weather and load forecasts and updated network model. Finally, market adjustment is 

performed between 18:00 pm–0:00 am [12]. 

PJM’s DAM collects market participant offers such as energy and regulation 

bids between 08:00 am –11:00 am. The day-ahead results are posted by 13:30 pm after 

processing all the market requests from bids. After the results are available, the re-bids 

are processed until 14:15 pm. These re-bids and updated forecasts are used in the 

reliability analysis for out-of-market corrections, which goes from 14:15 pm until 

midnight [13].  

Southwest Power Pool’s (SPP’s) DAM posts the available generating reserves 

by 06:00 am following which SPP closes the generation offers and load bids by 09:30 

am. Between 09:30 am–13:00 pm, the commitment and dispatch schedules are 

optimized using SCUC. RUC process begins at 13:45 pm after collecting re-bids. 

Finally, the results from RUC are posted at 16:15 pm [14]. 

1.5. Unit Commitment 

Electric power needs to be generated, transferred, and utilized concurrently as 

there are limited bulk storage options. As a result, this process requires economical 

operational solutions. Moreover, the production of energy is governed by physical 

restriction of the generators, network, and transmission limits. Generators also have 

restrictions of ramping rates, minimum up-down time and reserve margins constraints. 

The production of energy is a multi-period (typically 24 hours) problem to meet the 
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hourly demand in a day-ahead scenario.   This process of indicating the ON/OFF status 

of generators and dispatch points of generators for each interval of a fixed period of 

time T is known as unit-commitment (UC). Here, care is taken to maintain flexibility 

to meet the variation of demand in real-time.  

Since the UC model is utilized in DAM, it requires a convex and linear model 

to ensure that a global solution can be obtained. Therefore, the UC is an optimization 

problem. Hence, constraints are required to model topology of the network and include 

the power flows in the lines since the power generated are delivered through the 

transmission network. However, it is of prime importance that the model is tractable 

and hence DC power flow constraints (an approximation of real power) are involved 

as opposed to AC power flow constraints. It can also be noted that the wholesale 

market/DAM only deals with real power trading which implies the binding requirement 

to energy price is the real power being traded. The resulting UC model is a mixed-

integer linear program (MILP). A detailed model of UC along with all the security 

constraints is provided in Chapter 2. 

1.6. N-1 reliability 

The guidelines of NERC (North American Reliability Council) standard 51 

describes that the solution of the UC requires an N-1 reliability criterion [2]. This 

implies that the power system should be planned and operated in a way to supply all 

loads without issues when a generator or line contingency occurs.  To satisfy this 
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standard, system operators usually use the security-constrained unit commitment 

(SCUC) to dispatch/commit generators. Due to the addition of security constraints, 

SCUC results in higher operation costs when compared to UC. To reduce the 

operational cost of SCUC system, flexibility can be leveraged through transmission, 

demand response, and energy storage. System costs also reduce when these actions are 

utilized as re-course actions in post-contingency scenario while adhering to the 

reliability standards. 

1.7. Preventive and Corrective actions 

The reliability in the system can be maintained by the combination of recourse 

actions to address the uncertainties in the system. Mainly they are divided into 

preventive action and corrective action. A preventive action is implemented prior to the 

contingency to avoid line flows exceeding emergency ratings following a contingency. 

This means the system is set to handle the contingency without any control actions such 

as re-dispatch following a contingency. A corrective action is implemented after the 

disturbance has occurred to move the system from emergency state to normal-secure 

or normal-insecure state. 

1.8. System Flexibility 

Ideally, the power system is engineered with reliability and future 

developments in mind. This implies that the system has existing flexibility in the form 

of additional transmission lines, fast-acting generation services, and demand response 
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capability. Also, with the addition of renewable sources, energy storage system is also 

available for providing transient or limited amount of energy, as needed. As a result, 

there are several ways that system flexibility can be leveraged to address short-term 

and long-term needs as well as congestion-relief methods when smart grids are 

operated efficiently. When system flexibility addressed in the form of network 

reconfiguration, demand response and energy storage can lead to additional benefits 

such as: (i) system reliability, (ii) congestion management, (iii) cost reduction, (iv) 

integration of renewable sources and (iv) contingency planning.  

1.9. Machine Learning 

Machine learning (ML) is a field of science developed to learn relationships in 

data. It is also popularly known as artificial intelligence (AI) as it mimics the pattern 

of brain by using trained neurons in decision making. ML models leverage data to 

improve performance on decision-support, prediction and automation. ML algorithms 

are used to develop models that learn through sample data also known as training data 

to help in making predictions or decisions without being explicitly programmed. In this 

work, ML is used for predictive classification to identify ON/OFF status of generators 

given input data. 

ML has two broad classes of problems namely, regression and classification. In 

regression models estimate continuous values whereas classification models 

approximate a mapping function from input variables to identify discrete output 
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variables, which can be labels or categories. Since generator status is binary in nature, 

therefore we predict whether the generator is ON/OFF. This implies that the outputs of 

ML model belong to a binary category. Hence, classification algorithms are studied 

rather than regression. For classification, several standard algorithms exist, namely 

decision tree classification, random forest classification and K-nearest neighbor 

classification. Even though these are well-established models but are still prone to 

errors. Since ML models are not 100% accurate, relying on these standard algorithms 

does not provide flexibility to adapt to the task at hand. For these reasons, logistic 

regression, neural networks and spatio-temporal models are proposed. This is because 

all the proposed models have a sigmoid output layer which restricts the output between 

0 and 1. In other terms, it inherently results in probabilistic outputs which can be 

leveraged for post-processing the ML predictions with a decision boundary to 

selectively use ML predictions of high accuracy.  

1.10. Industrial Feasibility 

The work developed in this thesis mainly focuses on the day-ahead operations 

of power systems. In day-ahead operations, the unit-commitment problem is mainly 

utilized not only to clear the market but also to operate the system and ensure reliability. 

In USA, which is a competitive/deregulated market, unbiased entities such as 

independent system operators and transmission system operators oversee this process 

to clear the market. However, it can be noted that unit commitment is performed both 



   

 

 

12 

in vertically-integrated/regulated market and competitive/deregulated markets. 

Therefore, the proposed work can be adopted in any business scenario since unit 

commitment is a fundamental element to provide economical solutions.  

1.11. Organization of the thesis 

The rest of this dissertation is structured as follows. Chapter 2 presents the 

background of system flexibility technologies such as network reconfiguration and 

demand response, and ways to integrate such tools in SCUC for day-ahead operations. 

The results outline benefits in reduced total cost, alleviating contingency-based 

congestion, and line overloading.  

Chapter 3 expands on the idea to use technologies present in the prior chapter 

to facilitate renewable energy sources through a multi-scenario stochastic approach. 

Results present the ability to reduce curtailment of free RES output and provide an 

efficient use of energy storage devices along with reduction is carbon emissions.    

Chapter 4 addresses the complexity of SCUC when implemented in tandem 

with network reconfiguration in particular as a corrective action. Corrective network 

reconfiguration solutions are present in the industry but albeit through operator 

experience. Hence, including explicit network reconfiguration constraints in SCUC as 

an economic tool increases the complexity several fold. A purely optimization solution 

through Benders Decomposition aided by heuristic methods are discussed and the 
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results show that the proposed technique can be a scalable solution for large power 

system networks.  

Chapter 5 deals with a machine learning approach for power system day-ahead 

operations. Several machine learning architectures are developed to learn from 

historical commitment and dispatch schedules to facilitate model reduction of SCUC, 

which can be utilized in any state-of-the-art heuristic, decomposition, and/or regular 

industrial approaches with ease. Results demonstrate considerable reduction of 

problem size resulting in increased computational efficiency with minimal loss in 

solution quality.    

Finally, Chapter 6 concludes the report by summarizing the results and 

addressing the future scope of work.  
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2. SYSTEM FLEXIBILITY THROUGH CORRECTIVE 

ACTIONS 

There are existing corrective actions and remedial schemes are utilized to 

address congesting relief, and to increase system reliability. However, such actions are 

only implemented through operator experience or study-based pre-determined actions. 

Though such actions address the immediate needs of system reliability, voltage 

maintenance and congestion-relief they are not considered in effective day-ahead 

operations. Mainly, the consideration of such tools in day-ahead operations through UC 

can add substantial relaxation to the constraints thereby increasing feasibility region of 

the problem. Therefore, a relaxed problem may provide a lower cost solution which is 

never considered in current practices.  

Independent system operators (ISOs) collect bids from generators and utilities 

each day and solve the day-ahead security-constrained unit-commitment (SCUC) to 

provide the optimal commitment of day-ahead schedules for generators to meet the 

predicted load for each hour of the day. A reliable grid is maintained through adherence 

to system security constraints. The security criteria include, but not limited to, line 

thermal limits, generator physical limits, reserve requirements and ramping constraints. 

The grid must also operate reliably in case of emergencies such as transmission line 

outage or generator loss and an N-1 reliable system stresses the importance of 

modelling such post-contingency situations. Traditionally, the reliability of the grid is 
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taken care by committing extra generators to ensure ramping and reserve requirements. 

However, transmission congestion in the network would result in buying power from 

expensive generating units thereby increasing the cost of operations. Typically, voltage 

profiles and transfer capability of the network are maintained by transmission 

congestion management schemes in the case of a congested network. Currently, there 

are no support for operators such as decision support tools to implement network 

reconfiguration and the current ISO model does not include switching of transmission 

lines during short-term operations since transmission assets are treated as a static 

network. This greatly reduces the potential of an efficient implementation of the 

flexibility offered by excess transmission capacity. Not only that, though demand 

response is significantly prevalent to modify consumption patterns, the benefits of such 

actions in the event of a contingency as a corrective action is absent. In this chapter, we 

discuss two potential corrective actions that can be utilize existing system flexibility 

namely corrective network reconfiguration (CNR) and corrective demand response 

(CDR).   

2.1. Literature Review 

2.1.1. CNR  

 Presently, transmission operators follow the procedure for relieving network 

congestion based on experience rather than sound systematic methods especially during 

contingencies. The importance of NR is seen through several industrial examples based 
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on historical or simulated control schemes. PJM details ad-hoc NR and control 

procedures in [15]–[16], whereas, ISO New England presents protocols for removing 

internal transmission lines in [17] to support system reliability. PJM used one such 

method as a corrective response to damage caused during Superstorm Sandy. During 

the storm, PJM lost 82 bulk electric facilities and the system demand was low which 

led to overvoltage issues in high voltage line. Several 500 kV transmission lines were 

opened by PJM as part of NR implementation to mitigate the overvoltage [18]. 

Since, transmission assets are treated as static networks, the use of a dynamic 

network configuration of power system elements can help ISOs to relieve network 

congestion, maintain the system security, and reduce operation costs. The reliable 

operation of system network at optimal cost is of prime concern. Therefore, congestion 

in transmission network can be addressed through NR and the research in [19] and [20] 

points to cost-saving as a result. However, the use of transmission as a controllable 

asset today is limited and left to the operator to decide and relieve the network 

congestion in emergency situations. 

NR can be of both preventive action and corrective action. However, concerns 

that NR causes a big network disturbance, stability issues and circuit breaker 

degradation makes corrective network reconfiguration (CNR) more attractive as it is 

only implemented after a contingency has occurred. Apart from system reliability, NR 

can provide significant cost-saving benefits and network congestion alleviation by 

rerouting the network flows. NR can be used as a preventive or corrective action. It is 
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also seen from prior research that frequent use of NR can cause large system 

disturbances and significant circuit breaker degradation. Therefore, it is more practical 

to use NR as a corrective mechanism for post-contingency scenarios as a non-invasive 

approach. This can be a viable option to mitigate or eliminate the transmission flow 

violations during contingent scenarios. 

CNR first introduced in [21] is attractive for the transmission line overload 

reduction and realizing market surplus benefits [21]–[23]. The cost-saving benefits 

CNR  due to the increased feasible set of solutions for the SCUC problem and a co-

optimized CNR method leads to significant cost saving and network congestion 

alleviation [24].  In addition, CNR offers increased network flexibility as shown in [25] 

where it was implemented on an industry case using an in-house industry software. 

Therefore, mainly NR as a corrective action shows practical and promising results.  

2.1.2. CDR 

With the advent of smart grid technologies, we have brought about intelligent 

energy management systems to operate the grid optimally and reliably. Traditionally, 

grid was operated in a top-down framework where the flexibility requirement of the 

power system is met with committing additional generators to meet the demand and 

the reliability requirement of the network. But the technology to sense and control 

signals with two-way communications has brought increased participation from 
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demand side in energy markets [37]. The system operators can also determine and send 

signals to not only redispatch generators but also adjust controllable loads. 

Utilities now offer several price-based or incentive-based programs for altering 

demand patterns through demand side management (DSM) that reduces the cost of the 

electricity the customer pays [38]. DSM not only lowers cost but also enhances 

reliability and provides self-healing capabilities for the power grid through demand 

response (DR) [39].  In particular, demand response through direct load control (DLC) 

enables grid operators to send signals to reduce non-critical loads directly. However, 

most DLC actions are implemented as part of the distribution network by utilities to 

shift non-critical loads from peak hours experiencing high demands to non-peak hours 

[38]. 

In day-ahead scheduling, system operators use SCUC to obtain the optimal 

commitment status and dispatch signals for generators to meet forecasted bulk hourly 

loads [40]. As per Federal Energy Regulatory Commission (FERC), the SCUC solution 

requires to be N-1 reliable where the system is capable of handling frequent line or 

generator outages individually [41].  

Here, system operators often utilize preventive and corrective control actions to 

maintain system reliability [40], [42]–[43]. Mostly, DR through controllable loads are 

considered as a preventive action. DR benefits the system by moving non-critical 

deferrable loads from peak hours to non-peak hours which increases the system 

flexibility and demand side market participation [37]–[38]. Though there are 
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emergency DR plans that several system operators implement, they are solely based on 

supply and demand balance for frequency regulation and typically this is factored in 

the SCED process where operators dispatch the participating DR resources [44].  

Mostly, ISOs compensate DLC by locational marginal prices (LMP) when 

utilized in real-time operations and fixed-price based schemes contracted in long-term 

capacity markets to shift demand [45]–[49]. By studying the ISO reports for outage 

statistics for the network with about 350 dispatchable generators and 9,000 miles of 

high voltage transmission lines, it reported that a low number of cases, 833, for the 

unplanned outages related to line in 2019 and unplanned outages generator are very 

rare [50]–[51]. Here, the untapped potential of DLC considering system flexibility or 

capacity release is not completely considered in short-term operations. Mostly, DR 

through dispatchable DLC are used for economic reasons and reliability reasons in 

base-case; it is only used for reliability purpose in post-contingency scenario.   

Most utilization of DLC is preventive in nature as seen in [52]–[53]. In [54], 

the DR actions were automated to respond to real-time dispatch schedule to provide 

additional reserves as an ancillary service to the grid. The DLC algorithms consider 

economic benefits in [55] where optimal control schedules are determined by nodal 

aggregators by optimizing the load profile. Many preventive DR actions also consider 

the reliability of power system but with limited contingencies being considered as seen 

in [56]. However, for economic benefits of DR actions, they need to be implemented 

in operational optimization problem such as SCUC or security-constrained economic 
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dispatch (SCED) and only [40],[55], and [57] include the power network constraints. 

Here, all the research address DR as a preventive action only, which may substantially 

affect customer comfort level and are susceptible to cyber security in real-time 

operations [58]. 

Currently, the use of corrective demand response (CDR) in response to 

contingency is never considered in the SCUC process. Similar to network 

reconfigurations as a corrective action [24], [43] and [60] CDR can also increase the 

solution quality by reducing costs when co-optimized with SCUC. But CDR can also 

provide additional system flexibility by shedding some non-critical load under 

contingency and allowing the committed units to ramp-up or ramp-down to meet the 

system requirements in post-contingency scenarios rather than committing additional 

units. Note that under CDR schemes, non-critical load shedding will occur only when 

the associated contingency actually occurs, which is a low probably event.  

Though there exists load shedding, especially during low supply scenarios due 

to congestion-induced or fault-induced events, this is however implemented for 

reliability and not for economic benefits in [42]. In [61], DR is considered as a 

corrective action in post-fault condition to release network capacity but not for 

economic benefits. Similarly, in [62], a few DLC operations are considered in a post-

contingency scenario to obtain additional system flexibility to enhance system 

reliability under an emergency but with limited economic considerations. In [61]–[62], 

the operational and network constraints are not completely considered or are only 
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focused on distribution networks. Therefore, the studies on benefits of utilizing DLC 

in day-ahead operations at the transmission level for post-contingency actions are 

limited. 

2.2. N-1 Security Constrained Unit Commitment (SCUC) 

In day-ahead scenario, once the generation and demand bids are obtained, the 

unit commitment is run to obtain an economical viable solution along with the day-

ahead generator commitment and dispatch schedule. To ensure that the commitment 

and dispatch solution practical the physical constraints governing the generators and 

networks modelled. Additionally, security constraints are added for N-1 reliability 

which implies that the system should be capable of handling events such as line or 

generator outage. The resulting problem is a mixed-integer linear program where the 

operational cost of generators is minimized subject to the underlying constraints. It can 

be noted that the SCUC is used in both competitive market and regulated system. 

Therefore, the algorithms proposed in the current chapter and later chapters can be 

implemented in either business environment. Section 2.2.1 details the mathematical 

model of a simple N-1 SCUC. Both CNR and CDR can be introduced into the SCUC 

model which is discussed in Section 2.3 and Section 2.4, respectively.  

2.2.1. Mathematical Model  

N-1 SCUC is a MILP problem represented by (2.1)–(2.22) where the goal is to 

optimize and reduce operational cost, (2.1), 
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 𝑀𝑖𝑛 ∑ ∑ (𝑐𝑔𝑃𝑔,𝑡 + 𝑐𝑔
𝑁𝐿𝑢𝑔,𝑡 + 𝑐𝑔

𝑆𝑈𝑣𝑔,𝑡)𝑡𝑔 ,  (2.1) 

subject to base-case generation constraints (2.2)–(2.12),  

𝑃𝑔
𝑚𝑖𝑛𝑢𝑔,𝑡 ≤ 𝑃𝑔,𝑡, ∀𝑔, 𝑡, (2.2) 

𝑃𝑔,𝑡 + 𝑟𝑔,𝑡 ≤ 𝑃𝑔
𝑚𝑎𝑥𝑢𝑔,𝑡, ∀𝑔, 𝑡,  (2.3) 

0 ≤ 𝑟𝑔,𝑡 ≤ 𝑅𝑔
10𝑢𝑔,𝑡, ∀𝑔, 𝑡, (2.4) 

∑ 𝑟𝑞,𝑡𝑞∈𝐺 ≥ 𝑃𝑔,𝑡 + 𝑟𝑔,𝑡, ∀𝑔, 𝑡,  (2.5) 

𝑃𝑔,𝑡 − 𝑃𝑔,𝑡−1 ≤ 𝑅𝑔
ℎ𝑟𝑢𝑔,𝑡−1 + 𝑅𝑔

𝑆𝑈𝑣𝑔,𝑡, ∀𝑔, 𝑡, (2.6) 

𝑃𝑔,𝑡−1 − 𝑃𝑔,𝑡 ≤ 𝑅𝑔
ℎ𝑟𝑢𝑔,𝑡 + 𝑅𝑔

𝑆𝐷(𝑣𝑔,𝑡 − 𝑢𝑔,𝑡 + 𝑢𝑔.𝑡−1), ∀𝑔, 𝑡, (2.7) 

∑ 𝑣𝑔,𝑞
𝑡
𝑞=𝑡−𝑈𝑇𝑔+1 ≤ 𝑢𝑔,𝑡, ∀𝑔, 𝑡 ≥ 𝑈𝑇𝑔,  (2.8) 

∑ 𝑣𝑔,𝑞
𝑡+𝐷𝑇𝑔

𝑞=𝑡+1 ≤ 1 − 𝑢𝑔,𝑡, ∀𝑔, 𝑡 ≤ 𝑇 − 𝐷𝑇𝑔,  (2.9) 

𝑣𝑔,𝑡 ≥ 𝑢𝑔,𝑡 − 𝑢𝑔,𝑡−1, ∀𝑔, 𝑡, (2.10) 

0 ≤ 𝑣𝑔,𝑡 ≤ 1, ∀𝑔, 𝑡, (2.11) 

𝑢𝑔,𝑡 ∈ {0,1}, ∀𝑔, 𝑡, (2.12) 

base-case power flow constraints (2.13)–(2.15), 

𝑃𝑘,𝑡 − 𝑏𝑘(𝜃𝑛,𝑡 − 𝜃𝑚,𝑡) = 0, ∀𝑘, 𝑡, (2.13) 

−𝑃𝑘
𝑚𝑎𝑥 ≤  𝑃𝑘,𝑡 ≤ 𝑃𝑘

𝑚𝑎𝑥 , ∀𝑘, 𝑡, (2.14) 

∑ 𝑃𝑔,𝑡𝑔∈𝑔(𝑛) + ∑ 𝑃𝑘,𝑡𝑘∈𝛿+(𝑛) − ∑ 𝑃𝑘,𝑡𝑘∈𝛿−(𝑛) = 𝑑𝑛,𝑡, ∀𝑛, 𝑡,  (2.15) 

post-contingency 10-minute ramping restrictions on generators (2.16)–(2.19), 

𝑃𝑔,𝑡 − 𝑃𝑔,𝑐,𝑡 ≤ 𝑅𝑔
10𝑢𝑔,𝑡, ∀𝑔, 𝑐 ∈ 𝐶, 𝑡, (2.16) 



   

 

 

23 

𝑃𝑔,𝑐,𝑡 − 𝑃𝑔,𝑡 ≤ 𝑅𝑔
10𝑢𝑔,𝑡, ∀𝑔, 𝑐 ∈ 𝐶, 𝑡, (2.17) 

𝑃𝑔
𝑚𝑖𝑛𝑢𝑔,𝑡 ≤ 𝑃𝑔,𝑐,𝑡, ∀𝑔, 𝑐 ∈ 𝐶, 𝑡, (2.18) 

𝑃𝑔,𝑐,𝑡 ≤ 𝑃𝑔
𝑚𝑎𝑥𝑢𝑔,𝑡, ∀𝑔, 𝑐 ∈ 𝐶, 𝑡, (2.19) 

and post-contingency non-radial transmission element power flow model (2.20)–

(2.22),  

𝑃𝑘,𝑐,𝑡 − 𝑏𝑘(𝜃𝑛,𝑐,𝑡 − 𝜃𝑚,𝑐,𝑡) = 0, ∀𝑘, 𝑐 ∈ 𝐶, 𝑡, (2.20) 

−𝑃𝑘
𝑒𝑚𝑎𝑥  ≤  𝑃𝑘,𝑐,𝑡 ≤ 𝑃𝑘

𝑒𝑚𝑎𝑥 , ∀𝑘, 𝑐 ∈ 𝐶, 𝑡, (2.21) 

∑ 𝑃𝑔,𝑐,𝑡𝑔∈𝑔(𝑛) + ∑ 𝑃𝑘,𝑐,𝑡𝑘∈𝛿+(𝑛) − ∑ 𝑃𝑘,𝑐,𝑡𝑘∈𝛿−(𝑛) = 𝑑𝑛,𝑡, ∀𝑛, 𝑐 ∈ 𝐶, 𝑡.  (2.22) 

Here, (2.2) and (2.3) represents the generator output min-max limits, (2.4) and 

(2.5) are the reserve requirements, (2.6) and (2.7) are the hourly ramping consideration, 

(2.8) and (2.9) are the min-up and min-down time of generators. (2.10) and (2.11) 

shows the start-up variable definition. The generator commitment indication variable 

are bound by binary integrality constraints as shown in (2.12). The base-case physical 

power flow constraints represented by (2.13) which models the power flow with DC 

line flow equations, (2.14) which depicts the long-term line thermal limits and (2.15) 

which represents nodal balance. 

The mixed integer program is a co-optimization of base-case and post-

contingency scenarios. The post-contingency generator constraints are modelled for the 

base-case solution through (2.16)–(2.17) which takes consideration of the 10-minute 

generator ramping constraints, and (2.18)–(2.19), the post-contingency generator 



   

 

 

24 

output min-max limits when line c is lost. Post-contingency scenarios of line flows are 

modelled for all non-radial lines when a transmission element outage occurs in (2.20). 

Equation (2.21) shows the emergency line flow limits and (2.22) is the post-

contingency nodal balance.  

2.3. Integration of CNR 

The concept of CNR is described pictorially in Fig. 2.1. Fig. 2.1 (a) represents 

the pre-contingency state with no line flow violations.  Fig. 2.1 (b) shows the post-

contingency state of the system. The contingency, line 3 outage, causes the injection at 

bus 2 to flow through the external path and line 2. However, bulk of the flow goes 

through line 2, which results in an overload of line 4. Traditionally, this scenario is 

countered by ramping the local generators to eliminate the line overload. However, this 

increases the operation cost as expensive generation redispatch are required. An 

alternative corrective action is to open line 2 which will reroute the entire injection at 

bus 1 and bus 2 through the external network to serve the load at bus 3 and bus 4 as 

represented in Fig. 2.1 (c). This action results in the elimination of line flow violations 

without additional cost.  
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(a) (b) (c) 

Fig. 2.1 Corrective action example: (a) Pre-contingency, (b) Post-contingency and (c) 

Post-switching - CNR action. 

2.3.1. Modelling N-1 SCUC with CNR 

The extensive formulation of SCUC is modelled though (2.1)–(2.22). However, 

the post-contingency transmission constraints in (2.19)–(2.20) are modified to offer 

flexibility by CNR in (2.22)–(2.26), 

𝑃𝑘,𝑐,𝑡 − 𝑏𝑘(𝜃𝑛,𝑐,𝑡 − 𝜃𝑚,𝑐,𝑡) + (1 − 𝑧𝑐,𝑡
𝑘 )𝑀 ≥ 0, ∀𝑘, 𝑐 ∈ 𝐶, 𝑡, (2.23) 

𝑃𝑘,𝑐,𝑡 − 𝑏𝑘(𝜃𝑛,𝑐,𝑡 − 𝜃𝑚,𝑐,𝑡) − (1 − 𝑧𝑐,𝑡
𝑘 )𝑀 ≤ 0, ∀𝑘, 𝑐 ∈ 𝐶, 𝑡, (2.24) 

−𝑃𝑘
𝑒𝑚𝑎𝑥𝑧𝑐,𝑡

𝑘  ≤  𝑃𝑘,𝑐,𝑡 ≤ 𝑧𝑐,𝑡
𝑘 𝑃𝑘

𝑒𝑚𝑎𝑥 , ∀𝑘, 𝑐 ∈ 𝐶, 𝑡, (2.25) 

and 

∑ (1 − 𝑧𝑐,𝑡
𝑘 )𝑘 ≤ 𝑍𝑚𝑎𝑥 , ∀𝑘, 𝑐 ∈ 𝐶, 𝑡, 𝑍𝑚𝑎𝑥 ∈ {0,1,2. . },  (2.26) 
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where, the CNR action is represented by the binary decision variable, 𝑧𝑐,𝑡
𝑘 , introduced 

in equations (2.23)–(2.25). This represents the status of switchable transmission 

element k under contingency c in time period t (When the value is 1, the line is in service 

and when value 0 the line is switched off/ not is service). M, is often represented as ‘big 

M’ which is a large real value. It ensures that equation (2.23) and (2.24) are linear in 

nature. The decision variable for switching decides the optimal network configurations 

for each contingency to relieve the post-contingency congestion in the system. Since 

NR can cause large system disturbance, restriction on number of transmission elements 

open is represented in (2.26). 

Hence, the extensive formulation N-1 SCUC-CNR is modelled by together by 

(2.1)–(2.19) and (2.22)–(2.26). The co-optimization leads to several conclusions about 

the benefits of utilization of CNR in day-ahead operations which are detailed in sub-

section 2.3.3.  

For this study, contingency set, C, considers transmission contingencies since 

transmission contingencies are more likely to occur as compared to generator 

contingencies. However, generator contingencies can also be included to the set without 

modification to the model. 

2.3.2. Testcase Description 

The IEEE 24-bus network developed by power experts [63] was used for testing 

in this paper. However, a modified data for the same network was utilized.  Fig. 2.2 
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represents this modified network which contains 24 buses, 33 generators, and 38 

branches. The total generation capacity is 3,393 MW and the types of generator 

available with operational cost, min and max outputs are presented in Table 2.1. The 

goal of the proposed SCUC model is to find out cost-saving in congested networks. The 

system peak load is 2,265 MW with a maximum nodal load of 210 MW and a minimum 

nodal load of 0. 

Table 2.1. Generator data in IEEE-24 Bus 

No. of Gen Min Max $/MWh 

4 2.4 12 94.74 

4 15.8 20 163.02 

4 15.2 76 19.64 

6 0 50 0 

3 25 100 75.64 

4 54.25 155 15.46 

3 68.95 197 74.75 

1 140 350 15.89 

2 100 400 5.46 
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Fig. 2.2 IEEE 24-bus System – one area of IEEE RTS-96 system.  

18 21 22

23

13

12

10
6

8

721

4

5

3 9

11

24

14

16 19 20

17

32 38

33
31

25

26

34

36

37

35

30
28 29

23

24

27

22
20

21

18

19

7

14 16 15 17
12

106

8

2

4

1

3
5

11

13

9

ng gen Index
n Branch Index
n Bus Index

1g 2g 3g 4g 5g 6g 7g 8g 9g 10g 11g

12
g
13

g
14

g
31

g
32

g
3
3 g

15g

22g

16g 17g 18g 19g 20g 21g

25g 26g 27g 28g 29g 30g24g23g



   

 

 

29 

2.3.3. Results 

The N-1 SCUC and N-1 SCUC-CNR are modelled in two different scenarios. 

Scenario I is when regular emergency rating and Scenario II is when infinite emergency 

rating is used for transmission elements in the network respectively. In Scenario I, the 

operational cost of $932,911 for N-1 SCUC and $923,995 for N-1 SCUC-CNR was 

obtained. This information is tabulated in Table 2.2. Scenario II operational cost shows 

the operational cost of the system when there are no congestion in the system in post-

contingency scenario. This implies that post-contingency congestion is significantly 

reduced with the use of CNR. It can be further verified from the dual values of the 

active post-contingency emergency thermal limits constraints; the use of CNR leads 

lower dual values which is tightly correlated to the congestion cost. 

The post-contingency congestion cost (CC) is defined as the difference in total 

operational cost in Scenario I (𝑇𝐶𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐼) and total operational cost in Scenario II 

(𝑇𝐶𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐼𝐼). It can be inferred that in N-1 SCUC, the post contingency congestion 

cost is $11,099. Whereas in N-1 SCUC-CNR, the post-contingency congestion cost is 

$2,183. For the test scenario, implementing CNR results in reduction of congestion cost 

by 80.33%. Transmission networks are built with redundancy and by including the 

CNR the flexibility in the network is utilized which reduces the congestion in the 

network.  
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Table 2.2. Operational Cost in N-1 SCUC 

 N-1 SCUC N-1 SCUC-CNR 

 Scenario I Scenario II Scenario I Scenario II 

Cost ($) 932,911 921,812 923,995 921,812 

𝐶𝐶 ($) 11,099 N/A 2,183 N/A 

 

Table 2.3 shows that implementing CNR required less frequent generator start-

ups in the 24-hour period as NR provides the opportunities for committed generators to 

ramp-up and meet post-contingency demand. In total, there were 26 generators start-

ups in the 24-hour period while using N-1 SCUC whereas only 20 generators start-ups 

in N-1 SCUC-CNR. In both cases 19 generators were started in the first hour. 

Implementing CNR required only one additional generator start-up as it enabled the 

existing generators to ramp up without transmission violations to meet the demand.  

Table 2.3. Generator Start-up   

Time Period ON Generators in N-1 

SCUC  

ON Generators N-1 SCUC-

CNR 

t=1 3,4,7,8,9,11,21–33 3,4,7,8,11,13,21–33 

t = 9 14 9 

t = 21 16,17,20 N/A 

t=23 1,5,6 N/A 

 

The solution of switching transmission lines for each contingent line was 

studied for a 24-hour period. We can understand the reconfiguration ideology using a 
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demand of 2,076 MW for period 8 and a demand of 2,265 MW for period 9. In period 

9, after the load profile change, it was noted that line 10 and line 23 are susceptible to 

post-contingency congestion. The scenario leading to congestion is tabulated in 2.4. 

Line 10 connects from bus 6 to bus 10 with a long-term thermal rating of 157.5 MW 

and an emergency rating of 180 MW and line 23 connects from bus 14 to bus 16 with 

a long-term thermal rating of 315 MW and an emergency rating of 393.75 MW. During 

congestion of line 10 and 23 in period 9, we noticed that the scenarios leading to post-

contingency congestion were reduced. CNR was beneficial to produce a maximum line 

overload reduction of 4% and 24% in lines 10 and 23 respectively. In the best case, 

24% reduction of line overload brings the line flow below the long-term thermal limit 

which reduces significant stress on transmission lines. In N-1 SCUC-CNR, only 1 

contingent scenario led to congestion in both lines respectively.  

The number of transmission elements opened as part of CNR played a role in 

reducing the congestion cost. Fig. 2.3 shows that the congestion cost reduced to $0 from 

$11,099 when more transmission elements were allowed to be opened if required. The 

difference in congestion cost when one transmission element is allowed to be opened 

in CNR versus multiple transmission elements is $2,183.  
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Table 2.4. Post-contingency Congestion Scenario for Period 9 

Post-contingency congested line 

(line number [from-bus – to-bus]) 

Post-contingency line outage (line number 

[from-bus – to-bus]) 

N-1 SCUC without CTS 
N-1 SCUC 

with CTS 

10 [6–10] 
1 [1–2],2 [1–3],7 [3–24],8 

[4–9],9 [5–10],27 [5–24] 
2 [1–3] 

23 [14–16] 
7 [3–24], 18 [11–13],21 [12–

13],22 [13–23],27 [5–24] 
7 [3–24] 

 

 

Fig. 2.3  Number of open transmission elements vs congestion cost. 

2.4. Integration of CDR 

Similar to CNR, CDR can also be integrated to SCUC. Since, CDR is 

modification of load profile with respect to a contingency the nodal variable, 𝐶𝐷𝑅𝑛,𝑐,𝑡, 
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is introduced in the post-contingency nodal-balance constraint as shown in (2.28). 

However, only non-critical loads can be modified or controlled effectively without 

affecting user comfort. Hence, (2.29) is added to control the effect of demand response 

when a contingency occurs. The contingency nodal variable, 𝐶𝐷𝑅𝑛,𝑐,𝑡 is controlled by 

introducing a penalty term in the objective cost. Therefore, the objective (2.1) is 

replaced by (2.27) and (2.22) is replaced with (2.28)–(2.29),  

𝑀𝑖𝑛 ∑ ∑ (𝑐𝑔𝑃𝑔,𝑡 + 𝑐𝑔
𝑁𝐿𝑢𝑔,𝑡 + 𝑐𝑔

𝑆𝑈𝑣𝑔,𝑡) +  ∑ (𝜋𝑐 ∗𝑛,𝑐,𝑡𝑡𝑔

𝑐𝑛
𝐶𝑡𝑔

∗ 𝐶𝐷𝑅𝑛,𝑐,𝑡),  

(2.27) 

∑ 𝑃𝑔,𝑐,𝑡𝑔∈𝑔(𝑛) + ∑ 𝑃𝑘,𝑐,𝑡𝑘∈𝛿+(𝑛) − ∑ 𝑃𝑘,𝑐,𝑡𝑘∈𝛿−(𝑛) = 𝑑𝑛,𝑡 −  𝐶𝐷𝑅𝑛,𝑐,𝑡,  (2.28) 

and 

𝐶𝐷𝑅𝑛,𝑐,𝑡  ≤ 0.3 ∗  𝑑𝑛,𝑡. (2.29) 

2.4.1. N-1 SCUC with CDR 

The extensive formulation N-1 SCUC-CDR is modelled by together by (2.2)–

(2.21) and (2.28)–(2.29). The flexibility offered by CDR is modelled in (2.28)–(2.29). 

Since generator contingencies are very rare compared to line contingencies, different 

models are formulated for both SCUC and SCUC-CDR. Mainly, T-SCUC and TG-

SCUC models the SCUC with only transmission contingencies and with both 

transmission and generator constraints, respectively. Whereas the proposed models for 

SCUC with corrective actions using DLC for post-contingency constraints are namely, 

T-SCUC-CDR and TG-SCUC-CDR, with transmission contingencies only and both 
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transmission and generator contingencies, respectively. Here, T-SCUC and TG-SCUC 

are defined by (2.2)–(2.22) and (2.28). T-SCUC-CDR and TG-SCUC-CDR are 

modelled through (2.2)–(2.21) and (2.28)–(2.29). The difference in T and TG models 

are captured through input set of contingencies, C, where 𝐶 ∈ 𝐾𝑐 for transmission 

contingencies only and 𝐶 ∈ 𝐺𝑐 ∪ 𝐾𝑐 when both transmission and generator 

contingencies are modelled. Based on the above constraints, the proposed models are 

consolidated in Table 2.5. 

Table 2.5. Proposed Model Constraints 

Model T-SCUC  TG-SCUC T-SCUC-CDR TG-SCUC-CDR 

Objective  (2.28) (2.28) (2.28) (2.28) 

Constraints 
(2.2)–

(2.22) 

(2.2)–

(2.22) 

(2.2)–(2.21) 

and (2.28)–

(2.29) 

(2.2)–(2.21) and 

(2.28)–(2.29) 

𝐶 𝐾𝑐 𝐺𝑐 ∪ 𝐾𝑐 𝐾𝑐 𝐺𝑐 ∪ 𝐾𝑐 

 

2.4.2. Total economic benefits of CDR 

From Table 2.6, the difference in overall cost of T-SCUC-CDR and TG-SCUC-

CDR against the T-SCUC and TG-SCUC demonstrates a cost saving of $9,825 and 

$14,996, respectively when CDR is introduced. This is due to the flexibility offered by 

CDR actions which provides a more economical commitment status and fewer 

generator start-ups to handle the same demand. Also, the more constrained problem 

which considers both line and generator contingencies, TG-SCUC and TG-SCUC-



   

 

 

35 

CDR, results in a higher cost saving than the respective models, T-SCUC and T-SCUC-

CDR, that only consider transmission outages. However, it can be noted that generator 

outages are very infrequent compared to line outages.  

The proposed model considering only transmission contingencies, T-SCUC-

CDR, results in a total curtailment of 25.5 MW over 24 hours as CDR action which is 

same in the case of TG-SCUC-CDR. It can be noted that the cumulative CDR action 

for line outages is only 0.01% of the peak system load and it brings about significant 

total operational cost reduction. It was also observed that key system line, line 7 or line 

27, outage required 8.4 MW CDR action at bus 14; and line 8 outage resulted with 2.18 

MW CDR action at bus 6 at various time periods. Therefore, only few critical outages 

required CDR to satisfy system requirements. TG-SCUC-CDR, the total amount of 

CDR action is much higher, 370 MW over 24 hours for generator outages and 25.5 

MW over 24 hours for line outages. Similar to CDR due to line outages, only a few 

large generator outages, generator 23 and generator 24, utilize CDR to maintain system 

reliability. 

Both TG-SCUC-CDR and T-SCUC-CDR models benefit by significantly faster 

solve time when compared to TG-SCUC and T-SCUC, respectively. In particular, TG-

SCUC-CDR is 20% faster than TG-SCUC and T-SCUC-CDR is 48% faster than T-

SCUC. This is because, the introduction of CDR results in a relaxed problem with 

increased feasible set of solutions. 
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      Table 2.6. Operational Cost and Post-contingency Demand curtailed  

 TG-SCUC 

TG-SCUC-

CDR 

T-SCUC T-SCUC-CDR 

Cost ($) 685,670 670,674 677,851 668,026 

MIPGAP 0.0095 0.0045 0.0085 0.0015 

Solve time (s) 237 191 111 57 

∑ 𝐶𝐷𝑅𝑛,𝑐,𝑡𝑛,𝑐∈𝐾𝑐,𝑡   NA 25.46 NA 25.46 

∑ 𝐶𝐷𝑅𝑛,𝑐,𝑡𝑛,𝑐∈𝐺𝑐,𝑡   NA 369.81 NA NA 

 

2.4.3. CDR penalty cost sensitivity 

Since the CDR actions result in curtailment of non-critical loads, a penalty cost 

for such actions are introduced in the objective cost in (2.27). Moreover, the 

occurrences of either transmission or generator outages are low which is modelled by 

𝜋𝑐. The product of the probability, 𝜋𝑐, and cost of CDR, 𝑐𝑛
𝐶𝑡𝑔

, represents the penalty 

cost in the system. The system was studied with varying cost of CDR from 0 $/MWh 

to 40,000 $/MWh. This is represented in two graphical forms, a low penalty cost 

sensitivity to CDR actions, Fig. 2.4 and a high penalty cost sensitivity to CDR actions, 

Fig. 2.5. The system shows inverse relations, that is the cumulative amount CDR 

actions decreases as cost of CDR increases.  



   

 

 

37 

In the low penalty cost sensitivity, at 0 $/MWh, there is no control to limit CDR 

actions and hence it results in cumulative curtailment of 328,925 MW for line outages 

and 341,379 MW for generator outages (not represented in the scale of graph). At 1 

$/MWh, we notice significant reduction to the CDR action with 25.46 MW for line 

outages and 369.8 MW for generator outages. It was noted that at low cost of CDR, the 

CDR actions due to generator outages are more sensitive whereas due to line outages 

are constant. Here, the total cost of the system changed marginally to increasing penalty 

cost with the anomaly at 1 $/MWh can be explained by the associated higher relative 

gap in solution. 

 

Fig. 2.4 Low penalty cost sensitivity study for TG-SCUC-CDR. 
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Fig. 2.5 High penalty cost sensitivity study for TG-SCUC-CDR. 

A high penalty cost sensitivity study was conducted to identify when the total 

CDR actions result 0 MW. Here, it was noted that only at very high cost of CDR, 

$40,000, the system does not implement CDR for both line outages and generator 

outages. Therefore, the total cost of the system for TG-SCUC-CDR is same as the TG-

SCUC. Also, it was noted that at high cost of CDR, the CDR actions due to generator 

outages and line outages are very sensitive. The cumulative CDR actions due to line 

outages dropped steeply from 25.46 MW to 8.5 MW at a penalty cost of $540 whereas 

due to generator outages dropped steeply at a penalty cost of $30 from 326.24 MW to 

1 MW. 
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2.4.4. System Flexibility 

Five scenarios were considered: two low-load scenarios (80%, 90%), a base-

load scenario (100%) and two high-load scenarios (110%, 120%). The load profile was 

varied using a percentage multiplied to the nodal load. Fig. 3.3 shows the total cost for 

various methods under different load profiles and respective cumulative CDR actions 

for generator and line outages. 

 

Fig. 2.6 Total system cost and cumulative DR shifted for different scenarios. 

CDR is never implemented for the very low-load scenario (80%) since the base-

case network loading level is low and post-contingency networks are not congested. 

This implies both TG-SCUC and TG-SCUC-CDR obtain the same total cost. At very 

high load scenario, 120%, TG-SCUC and TG-SCUC-CDR are infeasible.  
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As the system is loaded, CDR actions are observed in load scenarios of 90%-

110% along with economic benefits of total cost reduction by cheaper generator 

dispatch schedule. Here, at 90% load scenario only line outages resulted in CDR actions 

whereas CDR actions in base-load (100%) and high-load scenarios (110%) are resulted 

from both line and generator outages. At base-load scenario (100%), the cumulative 

CDR actions due to line outages are lower compared to cumulative CDR actions due 

to generator outages.  

However, at high-load scenario (110%), TG-SCUC is infeasible whereas TG-

SCUC-CDR provides a feasible solution by utilizing the flexibility in the system 

associated with CDR. This implies that utilizing CDR is beneficial in serving higher 

critical loads compared to traditional SCUC which does not implement any corrective 

actions. 

2.4.5. Market Analysis 

Table 2.7 shows the market results for base-load profile (100%) which compare 

the load payment, generator revenue and average nodal LMP for various scheduling 

models when CDR is utilized (T-SCUC-CDR, TG-SCUC-CDR) and when CDR is not 

utilized (T-SCUC, TG-SCUC). Overall, it is observed that with CDR the average nodal 

LMP, load payment and generator revenue are higher, which is counter-intuitive since 

TG-SCUC-CDR or T-SCUC-CDR results in a lower total operation cost solution. Also, 
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the difference in average nodal LMP is more evident when both line and generator 

outages are considered compared to only line outages.  

The higher LMP in TG-SCUC-CDR compared to TG-SCUC can be explained using 

the generator commitment solution in Table 2.8. Since the market results are calculated 

with LMP, it is expected to have higher load payment and generator revenue due to 

higher average nodal LMP. However, the commitment solution, 14 for TG-SCUC and 

6 for TG-SCUC-CDR after period 1, favors long-term reliability of generators through 

infrequent generator start-ups with flexibility obtained through CDR. Here, all units are 

OFF before period 1; and in period 1, both TG-SCUC and TG-SCUC-CDR commit 18 

units. However, there are more uncommitted units which are always OFF in TG-

SCUC-CDR compared to TG-SCUC. Traditionally, the flexibility in the system is 

obtained by committing extra units as seen in TG-SCUC where a total of 474 

committed generator-hours over 24 hours was noticed whereas in TG-SCUC-CDR, it 

was bettered efficiently to 460 committed generator-hours over 24 hours.   

The nodal LMP is higher in the case of TG-SCUC-CDR due to: (i) fewer 

generators are committed (ii) marginal units are more expensive (iii) the cheaper 

generators (always ON) capacity are completely utilized in the base-case dispatch 

solution. There are also more expensive units that are in ‘always OFF’ condition in TG-

SCUC-CDR, which points to reduced generator start-ups.   
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Table 2.7. Market Results for IEEE-24 Bus System 

 TG-SCUC TG-SCUC-CDR T-SCUC T-SCUC-CDR 

Load 

payment($) 

1,289,650 1,698,060 1,070,370 1,071,270 

Gen revenue ($) 707,594 1,073,830 1,683,830 1,695,420 

Avg LMP ($) 23.7 31.74 31.51 31.67 

 

Table 2.8. Generator Commitment Status 

 TG-SCUC TG-SCUC-CDR 

Always ON 3,7,8,21–33 4,7–8,21–33 

Always OFF 12–15 1–2, 5–6,15–16,19–20 

Marginal Units 1–6,9–11,16–20 3,9–11,17–18 

Total start-ups t > 1 14 6 

Total start-ups t = 1 18 18 

Total commitment 474 460 

 

2.5. Summary  

The use of demand response as a corrective action to system contingencies was 

proposed as TG-SCUC-CDR model and studied. Mainly, TG-SCUC-CDR and T-

SCUC-CDR results in lower operational costs by reducing generator start-ups and 
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fewer generators committed for the same load profile compared to TG-SCUC and T-

SCUC, respectively. In particular, the sensitivity of such CDR actions which provide 

significant economic benefits were studied with respect to penalty cost and load profile 

variation. The results indicate that given a high demand profile, SCUC is infeasible 

whereas SCUC-CDR is feasible as the system uses the available system flexibility. 

Also, the sensitivity to penalty cost shows that CDR actions with even small amounts 

such as 2 MW can result in substantial economic benefits. It was also noted that the 

CDR actions due to generator outages are more sensitive to variation in penalty costs.  

The market analysis resulted in counter-intuitive results as the average nodal 

LMP were higher for TG-SCUC-CDR and T-SCUC-CDR compared to TG-SCUC and 

T-SCUC, respectively. However, this was explained by the additional units committed 

and the capacity of cheaper generators were not completely exhausted at the cost of 

expensive units running at no-load or low capacities in the case of TG-SCUC and T-

SCUC 

The best scenario is represented by infinite transmission capacity in the post-

contingency scenario, which serves as a benchmark to measure the performance of the 

proposed CTS in SCUC. It is observed that CTS can alleviate the network congestion 

in post-contingency scenarios by rerouting power through the network. The 

implementation of CTS also led to fewer generator start-ups. This is evident from the 

results that only 1 generator start-up is required when CTS is used as compared to 7 
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without CTS after period 1. Overall, this results in reduced operational cost, congestion 

cost and higher transmission capability in the case of a congested network.  

Studying the line flows in contingent scenarios, we note that line overload was 

reduced with CTS in most contingent scenarios. The use of CTS can lead to the removal 

of post-contingency transmission congestions if more transmission elements are 

allowed to open in each contingent scenarios which will result in $0 in congestion cost. 

However, there are concerns with TS as it can cause a large disturbance to the system. 

The additional cost due to the restriction of allowing one transmission element to be 

open in CTS is a tradeoff between system reliability and cost saving. The congestion 

cost, $2,183, is only 0.2% of the total operation cost and it can be attributed as a 

reliability cost to avoid system disturbance. 
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3. SYSTEM FLEXIBILITY CONSIDERING RENEWABLE 

ENERGY SYSTEMS  

The electric power generated needs to be transferred and utilized concurrently 

since it is expensive to store bulk power. This requires state of the art approaches that 

optimize the scheduling before-hand to ensure reliable power supply, save cost and 

avoid resource wastage. This stresses on the development of smarter algorithms to 

effectively utilize the flexibility in the power system which includes the network. Not 

only that, the importance on climate change and global warming in recent years has 

increased the investments in renewable sources of energy. The Paris climate deal set 

ambitious goals to reduce the carbon emissions by 2030 to limit the rise in global 

temperature [64]. Such directives place an emphasis on renewable energy sources 

(RES) as opposed to conventional fossil fuel plants. Typically, an increase in wind and 

solar generation is seen as favorable. However, the intermittent nature of RES due to 

weather brings additional challenges to the efficient and reliable grid operations [65]. 

To address the integrations of RES, flexibility of the system can be utilized through 

preventive or corrective actions. Not only that, in addition to such actions, there is 

increase in energy storage system which also offers additional system flexibility.   
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3.1. Literature Review 

3.1.1. RES through Network Reconfiguration 

During high penetration of RES, a flexible power system facilitates the 

integration of intermittent RES. This entails the usage of storage devices, flexible 

transmission and flexible demand. Moreover, the requirement of favorable location and 

land implies RES are placed in remote locations.  Therefore, even with the introduction 

of large-scale storage devices, the high penetration of RES results in curtailment due 

to network congestion. As a result, local generating sources utilizing fossil fuels are 

more utilized at the cost of RES curtailment.  

An effective smart grid and new technologies such as energy storage or flexible 

AC transmission System (FACTS) are required to utilize RES concurrently without 

spilling free RES and to maintain lower operational costs. Due to such variations, the 

grid network is also built with redundancy to handle increasing future demand and 

maintain system reliability. This adds flexibility in the transmission network that is not 

fully considered as one static network cannot be always optimal.  

Traditionally, the flexibility is provided by committing extra generators to 

handle emergencies and the transmission element in the network is treated as a static 

asset barring scheduled maintenance outages [19]. Hence, the transmission flexibility 

of the grid is less utilized in congestion management via network reconfiguration (NR) 

[19]. Currently, ISOs do not implement a dynamic network in day-ahead or real-time 
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operations. To relieve network congestion and reduce RES curtailment, it requires 

transmission expansion planning to increase the transfer capability [25]. Another 

option, as state earlier is to redirect the power flow on the lines. This can be 

implemented through modifying the network reconfiguration (NR) [19], [20], [66] or 

line parameters using FACTS devices [67]. However, flexibility through expansion 

planning, energy sources and FACTS devices require expensive investment and 

maintenance. Therefore, the usage of NR is attractive to utilize the power produced by 

economical generators and RES to meet the demand concurrently as it does not require 

any investment.   

The impact of NR on high penetrative wind models were studied in [25],[25]–

[28]. [29] provides a real-time implementation of enhancing optimal power flow by 

incorporating CNR in economic dispatch to facilitate integration of RES in the grid. 

However, the effect of SCUC with CNR on high penetrative RES network and RES 

curtailment studies has not been performed. Due to the high variability of RES, it 

requires solution which is satisfied in multiple scenarios. Therefore, a stochastic 

implementation through a known probability distribution of multiple scenarios is 

considered for a feasible solution as seen in [30]–[33]. In [34], optimal NR is 

implemented through a bi-level stochastic implementation to solve large scale 

networks. However, this paper does not consider the use of reconfiguration as a 

corrective action and post-contingency constraints were not modelled.  
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3.1.2. RES with Energy Storage System and NR 

Due to the increase in investments in renewable energy sources (RES) to reduce 

carbon emissions, which in turn requires sophisticated technologies and smarter 

algorithms to utilize the intermittent free resource efficiently. Since RES is fed to the 

grid, it is also paramount to maintain the grid reliability. However, since RES is 

installed in remote weather-favorable locations, the transmission congestion can cause 

spillage of free resource [68]. Other viable technologies for reducing RES curtailments 

is through FACTS to reduce network congestion [35] and the use of energy storage 

[36]. Energy storage systems (ESS) has garnered significant attention as a solution to 

store excess RES output [69]. But, ESS can also be less utilized during transmission 

congestion when it is not located near RES. 

To address the above issues, the system flexibility can be utilized to avoid 

transmission congestion [19],[25] and store excess power for future use [71]. However, 

the network is still predominantly treated as static assets and transmission congestions 

management through network reconfiguration is often overlooked. Since network 

reconfiguration (NR) is a cheap and quick action it can lead to significant economic 

benefits through smarter algorithms.  

Presently, NR is overlooked in system scheduling or operations. The increase 

in complexity in introducing NR in day-ahead operations through N-1 security-

constrained unit commitment (SCUC) is a major reason. Thus, operators perform such 

actions based on experience. Since NR is a quick action it can implemented in the base-
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case as a preventive NR (PNR) [20],[26] and [72] and post-contingency-scenario as a 

corrective NR (CNR) [24] and [73] with economic benefits and congestion 

management. [74] and [75] show various approaches with promising results in 

computational performance while addressing PNR and/or CNR.  

CNR in real-time is implemented through heuristic methods in [43],[59]–[60] 

and by incorporating RES enhancing optimal power flow in  [29],[67]. In day-ahead 

operations, it is incorporated post-contingency constraints in  [74],[76]. However, [75] 

does not consider RES or ESS and [76] does not consider ESS. RES is facilitated with 

preventive resource scheduling in [31] and PNR in [27], [32] and [34]. In [34], PNR is 

implemented through a bi-level stochastic implementation to solve large scale 

networks. But, [27], [32] and [34] do not consider ESS. High penetration RES 

introduces huge variability in the system and therefore a multi-scenario stochastic 

approach which provides a common commitment is required while maintaining 

reliability [27], [31]–[32], [34] and [76]. In [75], both PNR and CNR are considered 

along with energy storage but this model does not include RES or address their 

unpredictability.  

Therefore, the effect of N-1 SCUC with PNR and CNR on high penetrative RES 

network with ESS for RES curtailment studies has not been studied. In this paper, we 

propose a model which considers a N-1 Stochastic-SCUC (SSCUC) solution 

integrating a multi-scenario RES such as wind and solar supported by ESS while 

considering PNR and CNR to achieve significant system flexibility. 
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3.2. N-1 SSCUC for Renewable Integration 

The intermittent nature of renewable sources such as wind and solar leads to 

uncertainty. To facilitate renewable energy sources (RES) the solutions of N-1 SCUC 

problem must be feasible for multiple scenarios. Hence, stochastic implementation of 

the N-1 SCUC problem is proposed and discussed in the following subsections. As 

stated in the literary review, RES are located in remote favorable destination without 

adequate transmission capacity. As a result, if lines are congested, RES faces 

congestion-induced curtailment. The goal of introducing NR and/or ESS in the model 

is to leverage network flexibility to reduce RES curtailments. In Section 3.2.1 we 

introduce the mathematical model of N-1 SSCUC while in Section 3.2.2 the NR and 

CNR constraints are explained and in Section 0, the constraints to model Energy 

storage are described. 

3.2.1. N-1 SSCUC Model 

Section 2.2.1 models the SCUC whereas the integration of RES brings about 

uncertainty to the model. Hence, the dimensionality of the N-1 SCUC model is 

increased by the introduction of scenario s which ensures the commitment solutions is 

valid for multi-scenario approach. 

The utilization of free RES output is directly related to reducing the cost and 

hence the curtailments are lower in base-case. However, SSCUC leads to high post-

contingency RES curtailment as it is not considered in the objective.  Therefore, if the 
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study is focused on reducing or eliminating RES curtailments, a penalty cost, 𝑐𝑤
𝑝𝑒𝑛

, was 

added for post-contingency curtailment as shown in (3.1),  

Minimize ∑ (𝑐𝑔
𝑁𝐿𝑢𝑔,𝑡 + 𝑐𝑔

𝑆𝑈𝑣𝑔,𝑡 +𝑔,𝑡

 ∑ (𝜋𝑠𝑐𝑔𝑃𝑔,𝑡,𝑠)𝑠 ) + ∑ (𝜋𝑠𝑐𝑤
𝑝𝑒𝑛(𝑃𝑤

𝑚𝑎𝑥 − 𝑃𝑤,𝑐,𝑡,𝑠)𝑤,𝑐,𝑡,𝑠 ,  

(3.1) 

however, if the study is focused on finding the benefits of NR/CNR and ESS then the 

penalty cost, 𝑐𝑤
𝑝𝑒𝑛 = 0 , is utilized. 

The base-case generation constraints, (3.2)–(3.13), consist of the min-max 

limits of generator output, reserve limits, generator ramping requirements, minimum 

up-down time, generator start-up, commitment constraints bounded by integrality, and 

finally the maximum RES generation constraints, 

𝑃𝑔
𝑚𝑖𝑛𝑢𝑔,𝑡 ≤ 𝑃𝑔,𝑡,𝑠, ∀𝑔, 𝑡, 𝑠, (3.2) 

𝑃𝑔,𝑡,𝑠 + 𝑟𝑔,𝑡,𝑠 ≤ 𝑃𝑔
𝑚𝑎𝑥𝑢𝑔,𝑡, ∀𝑔, 𝑡, 𝑠,  (3.3) 

0 ≤ 𝑟𝑔,𝑡,𝑠 ≤ 𝑅𝑔
10𝑢𝑔,𝑡, ∀𝑔, 𝑡, 𝑠, (3.4) 

∑ 𝑟𝑞,𝑡,𝑠𝑞∈𝐺 ≥ 𝑃𝑔,𝑡,𝑠 + 𝑟𝑔,𝑡,𝑠, ∀𝑔, 𝑡, 𝑠,  (3.5) 

𝑃𝑔,𝑡,𝑠 − 𝑃𝑔,𝑡−1,𝑠 ≤ 𝑅𝑔
ℎ𝑟𝑢𝑔,𝑡−1 + 𝑅𝑔

𝑆𝑈𝑣𝑔,𝑡, ∀𝑔, 𝑡, 𝑠, (3.6) 

𝑃𝑔,𝑡−1,𝑠 − 𝑃𝑔,𝑡,𝑠 ≤ 𝑅𝑔
ℎ𝑟𝑢𝑔,𝑡 + 𝑅𝑔

𝑆𝐷(𝑣𝑔,𝑡 − 𝑢𝑔,𝑡 + 𝑢𝑔.𝑡−1), ∀𝑔, 𝑡, 𝑠, (3.7) 

∑ 𝑣𝑔,𝑞
𝑡
𝑞=𝑡−𝑈𝑇𝑔+1 ≤ 𝑢𝑔,𝑡, ∀𝑔, 𝑡 ≥ 𝑈𝑇𝑔,  (3.8) 

∑ 𝑣𝑔,𝑞
𝑡+𝐷𝑇𝑔

𝑞=𝑡+1 ≤ 1 − 𝑢𝑔,𝑡, ∀𝑔, 𝑡 ≤ 𝑇 − 𝐷𝑇𝑔,  (3.9) 

𝑣𝑔,𝑡 ≥ 𝑢𝑔,𝑡 − 𝑢𝑔,𝑡−1, ∀𝑔, 𝑡, (3.10) 
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𝑣𝑔,𝑡 ∈ {0,1}, ∀𝑔, 𝑡, (3.11) 

𝑢𝑔,𝑡 ∈ {0,1}, ∀𝑔, 𝑡, (3.12) 

and 

0 ≤ 𝑃𝑤,𝑡,𝑠 ≤ 𝑃𝑤,𝑠
𝑚𝑎𝑥, ∀𝑤, 𝑡, 𝑠. (3.13) 

The base-case transmission constraints, (3.14)–(3.16), consist of DC power 

flow equation, the min-max line long-term thermal limits, and the nodal power balance 

equations with renewable generation injection, 

∑ 𝑃𝑔,𝑡,𝑠𝑔∈𝑔(𝑛) + ∑ 𝑃𝑘,𝑡,𝑠𝑘∈𝛿+(𝑛) − ∑ 𝑃𝑘,𝑡,𝑠𝑘∈𝛿−(𝑛) = 𝑑𝑛,𝑡 −

 ∑ 𝑃𝑤,𝑡,𝑠𝑤∈𝑤(𝑛) , ∀𝑛, 𝑡, 𝑠,  
(3.14) 

𝑃𝑘,𝑡,𝑠 − 𝑏𝑘(𝜃𝑛,𝑡,𝑠 − 𝜃𝑚,𝑡,𝑠) = 0, ∀𝑘, 𝑡, 𝑠, (3.15) 

and 

−𝑃𝑘
𝑚𝑎𝑥 ≤  𝑃𝑘,𝑡,𝑠 ≤ 𝑃𝑘

𝑚𝑎𝑥 , ∀𝑘, 𝑡, 𝑠.  (3.16) 

The post-contingency case generator constraints, (3.17)–(3.21), models the 

generator 10-minute ramp up-down and min-max limits and renewable generation limit 

after the outage of line c, 

𝑃𝑔,𝑡,𝑠 − 𝑃𝑔,𝑐,𝑡,𝑠 ≤ 𝑅𝑔
10𝑢𝑔,𝑡, ∀𝑔, 𝑐 ∈ 𝐶, 𝑡, 𝑠, (3.17) 

𝑃𝑔,𝑐,𝑡,𝑠 − 𝑃𝑔,𝑡,𝑠 ≤ 𝑅𝑔
10𝑢𝑔,𝑡, ∀𝑔, 𝑐 ∈ 𝐶, 𝑡, 𝑠, (3.18) 

𝑃𝑔
𝑚𝑖𝑛𝑢𝑔,𝑡 ≤ 𝑃𝑔,𝑐,𝑡,𝑠, ∀𝑔, 𝑐 ∈ 𝐶, 𝑡, 𝑠, (3.19) 

𝑃𝑔,𝑐,𝑡,𝑠 ≤ 𝑃𝑔
𝑚𝑎𝑥𝑢𝑔,𝑡, ∀𝑔, 𝑐 ∈ 𝐶, 𝑡, 𝑠, (3.20) 



   

 

 

53 

  

and 

0 ≤ 𝑃𝑤,𝑐,𝑡,𝑠 ≤ 𝑃𝑤,𝑠
𝑚𝑎𝑥 , ∀𝑤, 𝑡, 𝑠. (3.21) 

In the post-contingency case, transmission constraints are (3.23)–(3.24) and the 

nodal balance is maintained under a line outage through (3.22), 

∑ 𝑃𝑔,𝑐,𝑡,𝑠𝑔∈𝑔(𝑛) + ∑ 𝑃𝑘,𝑐,𝑡,𝑠𝑘∈𝛿+(𝑛) − ∑ 𝑃𝑘,𝑐,𝑡,𝑠𝑘∈𝛿−(𝑛) = 𝑑𝑛,𝑡 −

∑ 𝑃𝑤,𝑐,𝑡,𝑠𝑤∈𝑤(𝑛) , ∀𝑛, 𝑐 ∈ 𝐶, 𝑡, 𝑠,  

(3.22) 

𝑃𝑘,𝑐,𝑡,𝑠 − 𝑏𝑘(𝜃𝑛,𝑐,𝑡,𝑠 − 𝜃𝑚,𝑐,𝑡,𝑠) = 0, ∀𝑘, 𝑐 ∈ 𝐶, 𝑡, 𝑠, (3.23) 

and  

−𝑃𝑘
𝑒𝑚𝑎𝑥  ≤  𝑃𝑘,𝑐,𝑡,𝑠 ≤ 𝑃𝑘

𝑒𝑚𝑎𝑥, ∀𝑘, 𝑐 ∈ 𝐶, 𝑡, 𝑠. (3.24) 

3.2.2. NR and CNR modelling  

Branch power flow equations and limits without NR is modelled in (3.14)–

(3.15),whereas without CNR is modelled in (3.23)–(3.24). NR or CNR modelling 

requires the binary decision variables, 𝑧𝑘,𝑡,𝑠
𝑃𝑁𝑅 and  𝑧𝑘,𝑐,𝑡,𝑠

𝐶𝑁𝑅 , respectively. The decision 

variable is incorporated in (3.27) for PNR and (3.31) for CNR. Here, a value of 0 

represents line is disconnected from the system and the value of 1 indicates line is 

available. Also, since network topology changes can cause a big disturbance in the 

system, (3.28) for PNR and (3.32) for CNR, is added to limit to at-most one topology 

change per instance. Linearity in the power flow equation of (3.14) and (3.23) are 
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implemented by introducing the ‘big-M’ method. Therefore, for PNR, (3.14) is replaced 

by (3.25)–(3.26) and for CNR, (3.23) is replaced by (3.29)–(3.30).  

To summarize PNR is implemented in the base-case and is modelled with,   

𝑃𝑘,𝑡,𝑠 − 𝑏𝑘(𝜃𝑛,𝑡,𝑠 − 𝜃𝑚,𝑡,𝑠) + (1 − 𝑧𝑘,𝑡,𝑠
𝑃𝑁𝑅)𝑀 ≥ 0, ∀𝑘, 𝑡, 𝑠, (3.25) 

𝑃𝑘,𝑡,𝑠 − 𝑏𝑘(𝜃𝑛,𝑡,𝑠 − 𝜃𝑚,𝑡,𝑠) − (1 − 𝑧𝑘,𝑡,𝑠
𝑃𝑁𝑅)𝑀 ≤ 0, ∀𝑘, 𝑡, 𝑠, (3.26) 

−𝑧𝑘,𝑡,𝑠
𝑃𝑁𝑅𝑃𝑘

𝑚𝑎𝑥 ≤  𝑃𝑘,𝑡,𝑠 ≤ 𝑧𝑘,𝑡,𝑠
𝑃𝑁𝑅𝑃𝑘

𝑚𝑎𝑥, ∀𝑘, 𝑡, 𝑠, (3.27) 

and 

∑ (1 − 𝑧𝑘,𝑡,𝑠
𝑃𝑁𝑅)𝑘 ≤ 1, ∀𝑘, 𝑡, 𝑠.    (3.28) 

CNR is implemented in post-contingency and is modelled with,   

𝑃𝑘,𝑐,𝑡,𝑠 − 𝑏𝑘(𝜃𝑛,𝑐,𝑡,𝑠 − 𝜃𝑚,𝑐,𝑡,𝑠) + (1 − 𝑧𝑘,𝑐,,𝑡,𝑠
𝐶𝑁𝑅 )𝑀 ≥ 0, ∀𝑘, 𝑐, 𝑡, 𝑠, (3.29) 

𝑃𝑘,𝑐,𝑡,𝑠 − 𝑏𝑘(𝜃𝑛,𝑐,𝑡,𝑠 − 𝜃𝑚,𝑐,𝑡,𝑠) − (1 − 𝑧𝑘,𝑐,𝑡,𝑠
𝐶𝑁𝑅 )𝑀 ≤ 0, ∀𝑘, 𝑐, 𝑡, 𝑠,  (3.30) 

−𝑃𝑘
𝑒𝑚𝑎𝑥𝑧𝑘,𝑐,𝑡,𝑠

𝐶𝑁𝑅  ≤  𝑃𝑘,𝑐,𝑡,𝑠 ≤ 𝑧𝑘,𝑐,𝑡,𝑠
𝐶𝑁𝑅 𝑃𝑘

𝑒𝑚𝑎𝑥 , ∀𝑘, 𝑐, 𝑡, 𝑠, (3.31) 

and  

∑ (1 − 𝑧𝑘,𝑐,𝑡,𝑠
𝐶𝑁𝑅 )𝑘 ≤ 1, ∀𝑘, 𝑐, 𝑡, 𝑠.  (3.32) 

3.2.3. Energy storage system modelling 

ESS can be modelled by characteristic equations of charging and discharging 

of the battery for base-case in (3.33)–(3.39) and post-contingency case in (3.41)–(3.47). 

These constraints of the batteries can be introduced in SSCUC by replacing both (3.16) 

and (3.22) by  (3.40) and (3.48), respectively.  
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For the base-case, BESS constraints can be modelled with,  

𝑏𝑒,𝑡,𝑠
𝑐ℎ𝑎 + 𝑏𝑒,𝑡,𝑠

𝑑𝑖𝑠 ≤ 1, ∀𝑒, 𝑡, 𝑠, (3.33) 

0 ≤ 𝑃𝑒,𝑡,𝑠
𝑐ℎ𝑎 ≤  𝑃𝑚𝑎𝑥𝑒

𝑐ℎ𝑎𝑏𝑒,𝑡,𝑠
𝑐ℎ𝑎 , ∀𝑒, 𝑡, 𝑠, (3.34) 

−𝑅𝑚𝑎𝑥𝑒
𝑐ℎ𝑎 ≤ (𝑃𝑒,𝑡,𝑠

𝑐ℎ𝑎 − 𝑃𝑒,𝑡−1,𝑠
𝑐ℎ𝑎 )𝛥𝑇 ≤ 𝑅𝑚𝑎𝑥𝑒

𝑐ℎ𝑎, ∀𝑒, 𝑡, 𝑠, (3.35) 

0 ≤ 𝑃𝑒,𝑡,𝑠
𝑑𝑖𝑠 ≤  𝑃𝑚𝑎𝑥𝑒

𝑑𝑖𝑠𝑏𝑒,𝑡,𝑠
𝑑𝑖𝑠 , ∀𝑒, 𝑡, 𝑠, (3.36) 

−𝑅𝑚𝑎𝑥𝑒
𝑑𝑖𝑠 ≤ (𝑃𝑒,𝑡,𝑠

𝑑𝑖𝑠 − 𝑃𝑒,𝑡−1,𝑠
𝑑𝑖𝑠 )𝛥𝑇 ≤ 𝑅𝑚𝑎𝑥𝑒

𝑑𝑖𝑠, ∀𝑒, 𝑡, 𝑠, (3.37) 

𝑆𝑂𝐶𝑒
𝑚𝑖𝑛𝐸𝑆𝑆𝑒

𝑚𝑎𝑥 ≤ 𝐸𝑒,𝑡,𝑠 ≤ 𝑆𝑂𝐶𝑒
𝑚𝑎𝑥𝐸𝑆𝑆𝑒

𝑚𝑎𝑥 , ∀𝑒, 𝑡, 𝑠,  (3.38) 

𝐸𝑒,𝑡,𝑠 = 𝐸𝑒,𝑡−1,𝑠 + (𝜂𝑒
𝑐ℎ𝑎𝑃𝑒,𝑡,𝑠

𝑐ℎ𝑎 −
𝑃𝑒,𝑡,𝑠

𝑑𝑖𝑠

𝜂𝑒
𝑑𝑖𝑠

) , ∀𝑒, 𝑡, 𝑠, 
(3.39) 

and 

∑ 𝑃𝑔,𝑡,𝑠𝑔∈𝑔(𝑛) + ∑ 𝑃𝑘,𝑡,𝑠𝑘∈𝛿+(𝑛) − ∑ 𝑃𝑘,𝑡,𝑠𝑘∈𝛿−(𝑛) = 𝑑𝑛,𝑡 −  ∑ 𝑃𝑤,𝑡,𝑠𝑤∈𝑤(𝑛) +

 ∑ (𝑃𝑒,𝑡,𝑠
𝑐ℎ𝑎 − 𝑃𝑒,𝑡,𝑠

𝑑𝑖𝑠 )𝑒∈𝑒(𝑛) , ∀𝑛, 𝑡, 𝑠.  

(3.40) 

Since BESS are also used in the post-contingency scenario, constraints are required to 

ensure the operation as, 

0 ≤ 𝑃𝑒,𝑐,𝑡,𝑠
𝑐ℎ𝑎 ≤  𝑃𝑚𝑎𝑥𝑒

𝑐ℎ𝑎𝑏𝑒,𝑡,𝑠
𝑐ℎ𝑎 , ∀𝑒, 𝑐, 𝑡, 𝑠, (3.41) 

−𝑅𝑚𝑎𝑥𝑒
𝑐ℎ𝑎 ≤ (𝑃𝑒,𝑐,𝑡,𝑠

𝑐ℎ𝑎 − 𝑃𝑒,𝑡,𝑠
𝑐ℎ𝑎)𝛥𝑇 ≤ 𝑅𝑚𝑎𝑥𝑒

𝑐ℎ𝑎, ∀𝑒, 𝑐, 𝑡, 𝑠, (3.42) 

0 ≤ 𝑃𝑒,𝑐,𝑡,𝑠
𝑑𝑖𝑠 ≤  𝑃𝑚𝑎𝑥𝑒

𝑑𝑖𝑠𝑏𝑒,𝑡,𝑠
𝑑𝑖𝑠 , ∀𝑒, 𝑐, 𝑡, 𝑠, (3.43) 

−𝑅𝑚𝑎𝑥𝑒
𝑑𝑖𝑠 ≤ (𝑃𝑒,𝑐,𝑡,𝑠

𝑑𝑖𝑠 − 𝑃𝑒,𝑡,𝑠
𝑑𝑖𝑠 )𝛥𝑇 ≤ 𝑅𝑚𝑎𝑥𝑒

𝑑𝑖𝑠, ∀𝑒, 𝑐, 𝑡, 𝑠, (3.44) 

𝑆𝑂𝐶𝑒
𝑚𝑖𝑛𝐸𝑆𝑆𝑒

𝑚𝑎𝑥 ≤ 𝐸𝑒,𝑐,𝑡,𝑠 ≤ 𝑆𝑂𝐶𝑒
𝑚𝑎𝑥𝐸𝑆𝑆𝑒

𝑚𝑎𝑥 , ∀𝑒, 𝑡, 𝑠,  (3.45) 
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𝐸𝑒,𝑐,𝑡,𝑠 = 𝐸𝑒,𝑡,𝑠 + (𝜂𝑒
𝑐ℎ𝑎𝑃𝑒,𝑐,𝑡,𝑠

𝑐ℎ𝑎 −
𝑃𝑒,𝑐,𝑡,𝑠

𝑑𝑖𝑠

𝜂𝑒
𝑑𝑖𝑠

) , ∀𝑒, 𝑐, 𝑡, 𝑠, 
(3.46) 

0 ≤ 𝑃𝑒,𝑐,𝑡,𝑠
𝑐ℎ𝑎 ≤  𝑃𝑚𝑎𝑥𝑒

𝑐ℎ𝑎𝑏𝑒,𝑡,𝑠
𝑐ℎ𝑎 , ∀𝑒, 𝑐, 𝑡, 𝑠, (3.47) 

and 

∑ 𝑃𝑔,𝑐,𝑡,𝑠𝑔∈𝑔(𝑛) + ∑ 𝑃𝑘,𝑐,𝑡,𝑠𝑘∈𝛿+(𝑛) − ∑ 𝑃𝑘,𝑐,𝑡,𝑠𝑘∈𝛿−(𝑛) = 𝑑𝑛,𝑡 −

∑ 𝑃𝑤,𝑐,𝑡,𝑠𝑤∈𝑤(𝑛) +  ∑ (𝑃𝑒,𝑐,𝑡,𝑠
𝑐ℎ𝑎 − 𝑃𝑒,𝑐,𝑡,𝑠

𝑑𝑖𝑠 )𝑒∈𝑒(𝑛) , ∀𝑛, 𝑐, 𝑡, 𝑠.  

(3.48) 

3.2.4. Proposed models 

Several proposed models were introduced in this chapter as mentioned in Table 

3.1. The benchmark model is SSCUC which includes RES. The proposed SSCUC-CNR 

includes RES but does not include ESS. The proposed models SSCUC-P introduce 

RES,ESS, and PNR, whereas SSCUC-C includes RES,ESS, and CNR. The proposed 

model SSCUC-PC includes both PNR and CNR in addition to RES and ESS. 
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Table 3.1. Proposed Models  

Model Technologies 

added 

Base-Case 

Constraints 

N-1 Constraints 

SSCUC RES (3.2)–(3.16) (3.17)–(3.24) 

SSCUC-CNR RES, CNR (3.2)–(3.16) (3.17)–(3.22),(3.29)–

(3.32)  

SSCUC-P RES, ESS, PNR (3.2)–(3.13), 

(3.25)–(3.28), 

(3.33)– (3.40) 

(3.17)–(3.21), (3.23)–

(3.24), (3.41)–(3.48) 

SSCUC-C RES, ESS, CNR (3.2)–(3.13), 

(3.15)–(3.16), 

(3.33)–(3.40) 

(3.17)–(3.21),(3.29)–

(3.32), (3.41)–(3.48) 

SSCUC-PC RES, ESS, PNR, 

CNR 

(3.2)–(3.13), 

(3.25)–(3.28), 

(3.33)– (3.40) 

(3.17)–(3.21),(3.29)–

(3.32), (3.41)–(3.48) 

3.3. Test case modification for ESS and RES 

For this chapter, two different test systems were created by modifying the IEEE 

24-Bus system utilized in sub-section 2.3.2 as described below.  
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3.3.1. Testcase I: Modification for Scenario-based RES curtailment studies   

The IEEE 24-Bus system utilized in sub-section 2.3.2 contains 24 buses, 33 

generators and 38 branches. However, the system was modified to include three wind 

farms located at bus 12, bus 16 and bus 22 to study the effect of network constraints on 

RES curtailment. Five different scenarios are considered for wind generation; and the 

base total system renewable generation over 24 hours for each scenario are represented 

in Fig. 3.1.  

 
Fig. 3.1 The base total RES output for each scenario.  

The system-wide RES output for various penetration level is represented in Fig. 

3.2. The base total RES output was modified to obtain five cases considered for the 

study and can be classified using the peak load period penetration as ~15%, ~30%, 

~50%, ~60 and ~80%. Apart from the wind generation, the total generation capacity 
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from traditional units is 3,393 MW and the system peak load is 2,270 MW. The wind 

output was assumed to be constant for each three-hour-period due to the computational 

complexity of CNR for this study. 

 

 
Fig. 3.2 System-wide RES generation for various penetration levels. 

3.3.2. Testcase II: Scenario-based RES NR and ESS benefits studies   

The IEEE 24-Bus system utilized in sub-section 2.3.2 contains 24 buses, 33 

generators and 38 branches were modified. Modifications introduced in the system are 

the addition of multi-scenario RES at bus 16, and bus 21 while ESS  were installed at 

bus 14 and bus 23. The total available traditional generation capacity is 3,393 MW and 

the system peak load is 2,270 MW. 

The ESS parameters are present in Table 3.2. Four scenarios were considered 

for the RES with an average system penetration of 48% is considered with equal 
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probability distribution and is presented in Fig. 3.3. The RES output is assumed to be 

constant for four-hour-blocks. 

Table 3.2.. ESS Data 

Parameter Value 

Max Charging/Discharging capacity (MW) 220 

Max rate of charging/discharging (MW/h) 100 

SOC min/max 20%/90% 

Charging/discharging efficiency  0.9 

Max Energy (MWh) 250 

 

 
Fig. 3.3. The total RES capacity for each scenario. 
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3.4. Results and Analysis: Benefits of RES curtailment with CNR  

The benefits of CNR in reducing RES curtailments by increasing system 

flexibility. In this section, Testcase I highlighted in sub-section 3.3.1 is utilized to 

obtain the results. The following sub-sections analyze the results in detail. 

3.4.1. Rationale for Penalty Costs 

Initially, the system with peak penetration of 30% was studied under two cases, 

complete wind output usage (CWOU) that uses up all available wind power and 

variable wind output usage (VWOU) that allows the system to curtail some wind power 

for both models with and without CNR. Table 3.3 and Table 3.4, shows the total costs, 

the base-case curtailments (BCC) and the expected post-contingency curtailments 

(PCC) for day-ahead SSCUC and SSCUC-CNR respectively. The BCC is aggregated 

over all periods, ∀𝑡 and RES units, ∀𝑤. Similarly, the PCC is aggregated over all 

periods, ∀𝑡, and RES units, ∀𝑤, and then averaged over all contingencies, ∀𝑐. Since, 

this is a multi-scenario stochastic implementation, as shown in (3.49) and (3.50), the 

probability of scenarios is utilized to obtain BCC and PCC,  

𝐵𝐶𝐶 = (∑ (𝜋𝑠(𝑃𝑤
𝑚𝑎𝑥 − 𝑃𝑤,𝑡,𝑠)),𝑤,𝑡,𝑠   (3.49) 

and  

𝑃𝐶𝐶 = (∑ (𝜋𝑠(𝑃𝑤
𝑚𝑎𝑥 − 𝑃𝑤,𝑐,𝑡,𝑠))/𝑤,𝑐,𝑡,𝑠 𝑛𝑐 ,  (3.50) 

respectively. 
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From the initial assessment, SSCUC-CNR offers lower total costs. But from 

VWOU, both SSCUC and SSCUC-CNR are susceptible to heavy renewable 

curtailment since there is no cost associated with PCC in the objective when 

minimizing operational costs. It is also seen that the total cost for CWOU and VWOU 

is the same for the respective implementations. Therefore, introducing a penalty cost 

to limit PCC eliminates the curtailment in post-contingency cases without increasing 

total cost. Further studies in this section leverage the penalty for PCC. 

Table 3.3. Penalty Cost Studies for N-1 SSCUC 

 No PCC penalty With PCC Penalty 

 CWOU VWOU 

Total cost ($) 201,769 201,769 201,769 

BCC (MW) NA 0 0 

PCC (MW) NA 9.14 0 

 

Table 3.4. Penalty Cost Studies for N-1 SSCUC-CNR 

 No PCC penalty With PCC Penalty 

 CWOU VWOU 

Total cost ($) 177,170 177,170 177,170 

BCC (MW) NA 0 0 

PCC (MW) NA 80.90 0 
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3.4.2. Penetration Sensitivity Studies 

The renewable energy penetration-based sensitivity studies are performed, and 

the associated results are presented in Fig. 3.4 and Fig. 3.5. As shown in Fig. 3.4, the 

general trend observed is that (i) the total cost reduces as more free renewable power 

was utilized and (ii) SSCUC-CNR always offered lower cost solutions compared to 

SSCUC. This demonstrates that CNR alleviates network congestion and reduce 

congestion-induced cost by increasing the transmission flexibility.  

As shown in Fig. 3.5, the network utilizes all available renewable power in low 

penetration levels. However, RES curtailments are observed for both base case and 

contingency cases when RES penetration level is above 30%; it is also observed that 

CNR actions alleviate the post-contingency congestions for high penetration levels, 

50%-80%. However, under very-high penetration of 80%, CNR alone is not beneficial 

as both PCC and BCC are higher with SSCUC-CNR against traditional SSCUC. This 

can be characterized by the cost saving offered through congestion alleviation that 

provides a much lower cost (even if it includes the penalty for curtailment). Therefore, 

increasing the penalty costs for 80% RES penetration resulted in a reduction of PCC 

from 323 MW to 153 MW and a reduction of BCC from 1047 MW to 655 MW for 

SSCUC-CNR. However, there are no changes for SSCUC; instead, the total cost 

increases marginally because of higher penalty. Hence, a combination of dynamic 

penalty factor along with CNR may be more beneficial. 
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Fig. 3.4 Total Cost in $ under various penetration levels.  

 

Fig. 3.5 RES curtailment under various penetration levels. 
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3.4.3. CNR Actions 

The peak RES penetration of 80% shows high PCC in periods 1–3 and 7–9 due 

to the load profile, intermittent nature of RES and network congestion. However, 

periods 1–3 shows the most reconfiguration action taken. In total there were 64 line 

outage cases across 5 scenarios, 38 lines in periods 1–3 that required CNR action. Since 

only one line is removed as an action, a pattern to note here is that line 5 [bus 2 – bus 

6], line 16 [bus 10 – bus 11], and line 30 [bus 17 – bus 18] were common choices to 

remove from the network. 

On closer observation, firstly, these lines are closer to where RES are located 

in the network. Secondly, the bottleneck lines are typically line 10 [bus 6 – bus 10] and 

line 23 [bus 14 – bus 16]. The above CNR actions help relieve the congested lines 

which in turn reduces RES curtailments. 

3.4.4. Carbon Emission Studies 

One of the key aspects of integrating renewables in the system is the reduction 

of emissions. The emission data for the generators are used to highlight the reduced 

emissions. The base-case generation outputs were used to calculate the total net heat 

and emission of each generator for the test system. When averaged over multiple 

scenarios, it is seen from Fig. 3.6 that SSCUC-CNR leads to significantly lower carbon 

emissions at high penetration, 60%-80%, of RES. In comparison, SSCUC shows an 

increase in emissions at high penetration of RES due to higher curtailments. This 
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implies more traditional generators are used to meet the demand thereby increasing 

carbon emissions. 

 

Fig. 3.6 System carbon emission under various penetration levels.  

3.5. Results and Analysis: Benefits of ESS and NR  

The benefits of PNR and/or CNR with the aide of ESS in facilitating RES 

integrations is considered. In this section, Testcase II highlighted in sub-section 3.3.2 

is utilized to obtain the results. The following sub-sections analyze the results in detail. 

3.5.1. Total Cost Studies (ESS) 

Table 3.5 presents the results for proposed models for total expected cost in $, 

solve time in seconds and average RES curtailed per scenario in MW. The benchmark 

results for SSCUC present that the total expected cost (averaged over four scenarios) 

is $161,340 and it leads to an average RES curtailment over four scenarios of 208 MW.  
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The transmission flexibility through PNR and/or CNR results in significant 

economic benefits over SSCUC. Mainly, SSCUC-P and SSCUC-C implement only 

PNR and only CNR,  respectively, results in alleviation of congestion cost of $6,505 

and $2,940 over SSCUC. This implies that PNR, implemented in base-case, can 

provide more flexibility benefits to the system than CNR, implemented in post-

contingency case. The combination of PNR and CNR leads to further saving in 

SSCUC-PC since this provides additional transmission flexibility in both base-case and 

post-contingency case at $13,109 over SSCUC due to the increase in total feasibility 

region. The RES curtailment is the highest in SSCUC due to the similar reason and is 

bettered in models which implement PNR and/or CNR. A decrease in curtailment of 

free RES output of 139.75 MW and 35.75 MW is noticed per scenario for SSCUC-P 

and SSCUC-C. Again, SSCUC-PC provides the maximum decrease in curtailment of 

free RES output of about 162.5 MW per scenario.  

The computation complexity of the problem increases due to the binary 

variables introduced by PNR or CNR with CNR resulting in higher computational 

burden than PNR. This is evident from SSCUC-PC, though leads to the best solution, 

the solver results in timeout solution with higher MIPGAP of 0.02. 
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Table 3.5. Cost Studies for SSCUC 

MIPGAP=0.01 SSCUC SSCUC-P SSCUC-C SSCUC-PC 

Total Cost ($) 161,340 154,835 158,400 148,231 

Solve time (s) 82.09 260.36 561.67 

2500 

(Timeout) 

Avg. RES  

Curtailed (MW) 

208 68.25 172.25 45.5 

 

3.5.2. ESS Benefits 

In this section, we study the ESS usage in the proposed models. From Fig. 3.7, 

we notice a similar pattern that alleviation of congestion enables SSCUC-PC to utilize 

the ESS systems charge more in low demand (periods 1–8) than other models and 

whereas only SSCUC-C provides higher discharge capability than SSCUC-PC in peak 

demand (periods 9-17). This is because SSCUC-PC significantly reduces RES 

curtailment which directly implies more RES power is utilized by the system and hence 

this excess power in the initial periods is stored for future use.  

SSCUC-P shows the flattest trend which implies that the battery goes through 

smaller cycles. Therefore, PNR enables the ESS by decreasing the depth of discharge 

in batteries in the long run. This in turn can lead to long term benefits for ESS longevity 

before replacement. 
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Fig. 3.7. Total Cost in $ under various penetration levels. 

3.5.3.  Preventive and Corrective Action Strategy with ESS 

One of the key aspects of CNR is that not all contingencies lead to system 

congestion. Predominantly, line 31 [bus 17 – bus 22] and line 38 [bus 21– bus 22] are 

viable candidates for CNR. In both PNR and CNR, the reconfiguration action is 

preferred in high voltage side of the system. This is because the bottleneck line is line 

23 [bus 14 – bus 16].  

PNR is considered more favorable since it is implemented in over 98% of time 

period in each scenario. Since the network is a mesh network, there are redundancies 

in the network and a single topology is not optimal for serving the demand. For PNR, 

reconfiguring line 14 [bus 9 – bus 11] and line 19 [bus 11 – bus 14] which links the 

high voltage and low voltage side yields the best topology to serve the demand.   
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It is evident that only a few key reconfiguration actions are critical in addressing 

transmission flexibility. CNR action are closer to generation buses which enable 

committed cheaper generators to ramp up or ESS to discharge during low RES 

penetration period.  Whereas PNR actions identify the optimal network topology to 

serve the load is ideally performed on key lines closer to the low voltage side or loads 

of the network. 

3.6. Summary 

The increase in RES in the network is key to addressing climate change issues. 

Due to the intermittent nature of RES, smart grids are required to facilitate the 

integration of RES. To avoid undesired congestion-induced curtailment of free energy, 

a flexible network is required.  The day-ahead operational procedure still uses a static 

network which impedes further deployment of renewables in the grid.  

It was observed that SSCUC-CNR provides more transfer capability of the 

network thereby avoiding congestion-induced and contingency-induced RES 

curtailment in high-penetration of RES. Along with reduction of curtailment, SSCUC-

CNR also lowers the cost of operation, and reduces green-house gas emissions. 

Numerical simulations also showed that SSCUC-CNR is also beneficial in moderate-

penetration of RES by committing efficient green (less emission) generators which 

reduces the overall carbon emissions in a day-ahead schedule.  
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To address the imbalances, other technologies like ESS are required to store 

electrical energy. However, network congestion can still lead to RES curtailment and 

inefficient use of ESS. A smarter grid is required which utilizes a dynamic network to 

alleviate transmission congestion in both pre-contingency cases through PNR and post-

contingency cases through CNR to integrate the above resources. 

The cost studies demonstrate remarkable cost saving by reducing network 

congestion and utilizing additional free RES output by utilizing existing flexibility in 

transmission network. The ESS studies reveal that SSCUC-PC and SSCUC-C enable 

ESS to produce more power during peak periods whereas SSCUC-P ensure the 

longevity of storage devices by reducing the depth of discharge in each cycle in day-

ahead operations.   
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4. SCALABILITY OF CORRECTIVE NETWORK 

RECONFIGURATION 

4.1. Literature Review 

Network flexibility can be introduced in both real-time and day-ahead 

operations in the bulk power system. Due to the complexity, it can be noted from [78]–

[80], NR is implemented by various heuristic methods to obtain quick results. [81] 

utilizes three concurrent NR actions to improve performance.  In real-time scenarios, 

[43] presents a framework for integrating CNR with real-time contingency analysis and 

[59]–[60] proposed an enhanced energy management system with inclusion of a CNR 

module that can seamlessly and practically connect with real-time contingency analysis 

and security-constrained economic dispatch.  

In day-ahead scenario, the security-constrained unit commitment (SCUC) is run 

to obtain an economical viable solution along with the day-ahead generator 

commitment and dispatch schedule. Since SCUC is used in both regulated and 

deregulated environments, the algorithm developed in the paper can be implemented 

in either business environment.  

One main reason for not including NR/CNR is the increase in complexity of the 

N-1 SCUC model as it introduces additional binary variables to the mixed integer linear 

programming (MILP) problem. Here, decomposing the SCUC by iterative multi-stage 

approaches or using heuristic techniques is beneficial for algorithm performance. [82] 
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recognize NR benefits with a small subset of reconfigurable assets. [83] proposes a co-

optimized method which enhances N-1 security by considering both a preventive 

optimal NR scheduling and a CNR rescheduling that tolerate short-term overloads in  

post-contingency scenarios. [84]–[85] detail a two-stage SCUC with NR that can be 

solved iteratively for large-scale power systems. [86] proposes an iterative fast SCUC 

method to compute for each hour and provide the resulting solution as a starting point 

for the original SCUC. Typically decomposing the SCUC is implemented using 

Bender’s decomposition algorithm (BDA) or column and constraint generation 

algorithms (CCGA). 

BDA can effectively reduce the complexity of SCUC by decomposing it as a 

master problem and associated sub-problems. [77] solves a stochastic-SCUC problem 

which implements NR to mitigate wind uncertainty and considers an AC optimal power 

flow through linearized network losses by utilizing BDA to reduce the problem 

complexity. [87] implements a multi-stage discrete approach through BDA 

acceleration techniques to include emerging technologies in SCUC. However, [77], 

[86] and [87] does not consider NR/CNR. In [88], a sequential extensive approach to 

implement CNR in N-1-1 SCUC is considered, which is not scalable.  

Several authors have indicated slow convergence and sought heuristics to speed 

up BDA. In [89], a mixed-integer non-linear problem of long-term planning of 

distributed generation and reconfiguration of distribution system was solved by using 

BDA and accelerated by considering both feasibility and optimality cuts. In [90], 
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ordered sets, pre-solve and warm-start techniques were used for short-term hydropower 

maintenance scheduling. However, [89]–[90] do not perform any day-ahead market 

operations. In [91], a security-constrained optimal power flow was solved using 

heuristics and parallel solving of sub-problems using BDA. In [92], the concept of 

strong cuts using sensitivity factors were introduced to reduce iterations for solving 

SCUC. However, NR/CNR was never considered in [89]–[92]. 

CCGA, like BDA, also helps in reducing the problem complexity in SCUC. It 

is seen from [75], that energy and reserves are co-optimized while considering CNR 

and pre-contingency NR (PNR). A multi-level nested CCGA is used in [75]. Though 

this method addresses several extensions and considers umbrella contingencies, only 

one worst-case critical contingency per iteration is addressed to provide convergence 

for an exact solution and not compromise solve time. Therefore, the solution obtained 

from this method does not provide reconfiguration or re-dispatch solution for all 

contingencies. If more contingencies are required to be addressed, then the method 

proposed in [75] requires further iterations which may lead to substantial increase in 

solve time. 

4.2.Overview of Benders Decomposition Algorithm (BDA) 

The BDA method can be used to solve large-scale optimization problems that 

are computationally difficult due to the large number of constraints and variables. BDA 

partitions the problem into multiple smaller problems to solve it iteratively, which can 
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be more efficient than optimizing the original a single large problem. In this paper, the 

BDA decomposes SCUC, a large MILP problem, as a Master-slave formulation where 

the master problem is a MILP problem, and the slave problems are linear programming 

(LP) problems. The optimal solution of the master problem, a relaxed problem, may 

produce an infeasible solution for the slave problem. The slave problem verifies the 

master problem solution and if infeasible, then dual variables of the equations are used 

to provide feasibility cuts that are sent back to the master problem as constraints to 

refocus problem on a reliable feasible region. Fig. 4.1 represents the simplistic flow of 

BDA. 

  

Fig. 4.1 Procedural flowchart for BDA approach. 

4.3. Decomposition of N-1 SCUC and N-1 SCUC CNR 

The mathematical model presented in sub-section 2.3.1 depicts the extensive 

formulation of N-1 SCUC which co-optimizes both the base-case constraints (2.2)–

(2.15) and post-contingency constraints (2.16)–(2.22). However, this MILP 

formulation has increased complexity. As stated in the above section, a large MILP 

problem can be decomposed as master-slave problem and solved iteratively. While 

decomposing, the objective (2.1), and base-case constraints (2.2)–(2.15) and cut 

equation (4.1) forms the Master UC (MUC) problem which is a MILP problem. The 
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resulting MUC problem is same for both N-1 SCUC and N-1 SCUC-CNR. The cut-

equation described in (4.1) is formed from sub-problems,   

 

∑ (𝑃𝑔
𝑚𝑖𝑛𝑢𝑔,𝑡

𝑓𝑖𝑥
(𝛼𝑔,𝑐,𝑡

+ − 𝛼𝑔,𝑐,𝑡
− ) + (𝑅𝑔

10𝑢𝑔,𝑡
𝑓𝑖𝑥

− 𝑃𝑔,𝑡
𝑓𝑖𝑥

)𝛽𝑔,𝑐,𝑡
+ +𝑔∈𝐺

(𝑅𝑔
10𝑢𝑔,𝑡

𝑓𝑖𝑥
+ 𝑃𝑔,𝑡

𝑓𝑖𝑥
)𝛽𝑔,𝑐,𝑡

− ) + ∑ (𝑃𝑘
𝑒𝑚𝑎𝑥(𝐹𝑘,𝑐,𝑡

+ +  𝐹𝑘,𝑐,𝑡
− ) +𝑘∈𝐾

 0(𝑆𝑘,𝑐,𝑡)) + ∑ 𝑑𝑛,𝑡𝜆𝑛,𝑐,𝑡𝑛∈𝑁 ≤ 0, ∀𝜓,  

(4.1) 

where, 𝛼𝑔,𝑐,𝑡
+ , 𝛼𝑔,𝑐,𝑡

− , 𝛽𝑔,𝑐,𝑡
+ , 𝛽𝑔,𝑐,𝑡

+ , 𝐹𝑘,𝑐,𝑡
+ , 𝐹𝑘,𝑐,𝑡

−  , 𝑆𝑘,𝑐,𝑡 and 𝜆𝑛,𝑐,𝑡 are dual variables of 

constraints present in the PCFC sub-problem discussed in the following section. 

Once the MUC problem is solved the commitment and dispatch solution is 

checked for feasibility in the post-contingency constraints (2.16)–(2.22) for each 

period, t and contingency, c to maintain the slave problem as a LP. The process of 

checking feasibility in each individual case is known as post-contingency feasibility 

check (PCFC) and is represented in the following section. If the MUC solution is not 

feasible in PCFC sub-problem for (c,t) a cut is generated which comprises of the dual-

variables of each equation of the PCFC sub-problem. The aggregated cuts of all non-

feasible sub-problem of PCFC is added as a single constraint at the end of each iteration 

to the MUC problem. This process is followed until all sub-problems are feasible for 

the MUC solution.    

In order to propose CNR action the network-reconfigured PCFC (NR-PCFC) is 

derived from (2.16)–(2.19) and (2.21)–(2.26). Here, the important thing to note is the 

presence of reconfiguration variable, 𝑧𝑐,𝑡
𝑘 , makes the constraints a MILP. To make sure 
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that NR-PCFC is an LP problem, the reconfiguration are implemented one at a time 

and then checked for feasibility of the MUC solution. NR-PCFC is only implemented 

if the PCFC is infeasible.  The PCFC and NR-PCFC are discussed in detail in the 

following section.  

Two accelerators were identified to make the typical-decomposition approach 

solve faster: ranked closest branches to contingency element (CBCE) list [43], and 

critical subproblem identification. Firstly, it was observed that only a subset of the 

contingency sub-problems are critical, and an accelerator was developed to identify 

critical sub-problems to reduce computational burden. This accelerator can be 

implemented for both SCUC and SCUC-CNR and is represented in sub-section 4.3.3 

as critical sub-problem screener (CSPS). Secondly, the CNR actions can be 

implemented through the CBCE list, a ranked priority list of 20 closest branches to each 

contingent element in the network to obtain quick feasible results for CNR. The CBCE 

list is only used in NR-PCFC sub-problems and therefore, it is only used in the proposed 

methods implementing SCUC-CNR for large networks. 

4.3.1. PCFC Model 

The PCFC sub-problems derived from prior equations (2.16)–(2.22) are 

modelled with a slack variable, 𝑠1 and is represented through (4.2)–(4.11). The goal of 

post-contingency feasibility check is to check system feasibility for each contingency 

in set Ω𝑐𝑟𝑖 by conducting economic dispatch without CNR action. This is done by 
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minimizing the slack variable, 𝑠1, which indicates the feasibility of the sub-problem. If 

𝑠1 is exactly zero, then the problem is feasible; otherwise, it is infeasible, 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑠1. (4.2) 

The objective is subject to post-contingency generation modeling for a given 

contingency c in time-period t in set Ω𝑐𝑟𝑖 is modelled with,  

−𝑃𝑔,𝑐,𝑡 + 𝑠1(𝑅𝑔
10𝑢𝑔,𝑡

𝑀𝑈𝐶 −  𝑃𝑔,𝑡
𝑀𝑈𝐶) ≤ 𝑅𝑔

10𝑢𝑔,𝑡
𝑀𝑈𝐶 −

 𝑃𝑔,𝑡
𝑀𝑈𝐶 , ∀𝑔  

(𝛽𝑔,𝑐,𝑡
− ), 

(4.3) 

𝑃𝑔,𝑐,𝑡 + 𝑠1(𝑅𝑔
10𝑢𝑔,𝑡

𝑀𝑈𝐶 +  𝑃𝑔,𝑡
𝑀𝑈𝐶) ≤ 𝑅𝑔

10𝑢𝑔,𝑡
𝑀𝑈𝐶 +

 𝑃𝑔,𝑡
𝑀𝑈𝐶 , ∀𝑔  

(𝛽𝑔,𝑐,𝑡
+ ), 

(4.4) 

𝑃𝑔
𝑚𝑖𝑛𝑢𝑔,𝑡

𝑀𝑈𝐶 ≤ 𝑃𝑔,𝑐,𝑡 + 𝑠1(𝑃𝑔
𝑚𝑖𝑛𝑢𝑔,𝑡

𝑀𝑈𝐶), ∀𝑔 (𝛼𝑔,𝑐,𝑡
− ), (4.5) 

and  

𝑃𝑔,𝑐,𝑡 + 𝑠1(𝑃𝑔
𝑚𝑎𝑥𝑢𝑔,𝑡

𝑀𝑈𝐶) ≤ 𝑃𝑔
𝑚𝑎𝑥𝑢𝑔,𝑡

𝑀𝑈𝐶 , ∀𝑔  (𝛼𝑔,𝑐,𝑡
+ ). (4.6) 

Along with generation modelling, the post-contingency modeling of power 

flow for non-radial lines for a given contingency c in time-period t in set Ω𝑐𝑟𝑖 is 

modelled with, 

𝑃𝑘,𝑐,𝑡 − 𝑏𝑘(𝜃𝑛,𝑐,𝑡 − 𝜃𝑚,𝑐,𝑡) =  0, ∀𝑘 𝜖
𝐾

{𝑐}
 (𝑆𝑘,𝑐,𝑡), 

(4.7) 

𝑃𝑐,𝑐,𝑡 = 0,   (4.8) 

−𝑃𝑘
𝑒𝑚𝑎𝑥  ≤  𝑃𝑘,𝑐,𝑡 −  𝑠1(𝑃𝑘

𝑒𝑚𝑎𝑥), ∀𝑘 (𝐹𝑘,𝑐,𝑡
− ), (4.9) 
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𝑃𝑘,𝑐,𝑡 + 𝑠1(𝑃𝑘
𝑒𝑚𝑎𝑥) ≤ 𝑃𝑘

𝑒𝑚𝑎𝑥, ∀𝑘 (𝐹𝑘,𝑐,𝑡
+ ), (4.10) 

and 

∑ 𝑃𝑔,𝑐,𝑡𝑔∈𝑔(𝑛) + ∑ 𝑃𝑘,𝑐,𝑡𝑘∈𝛿+(𝑛) − ∑ 𝑃𝑘,𝑐,𝑡𝑘∈𝛿−(𝑛) +

𝑠1(𝑑𝑛,𝑡) = 𝑑𝑛,𝑡, ∀𝑛  

(𝜆𝑛,𝑐,𝑡), 

(4.11) 

where, 𝛼𝑔,𝑐,𝑡
+ , 𝛼𝑔,𝑐,𝑡

− , 𝛽𝑔,𝑐,𝑡
+ , 𝛽𝑔,𝑐,𝑡

+ , 𝐹𝑘,𝑐,𝑡
+ , 𝐹𝑘,𝑐,𝑡

−  , 𝑆𝑘,𝑐,𝑡 and 𝜆𝑛,𝑐,𝑡 are dual variables of 

respective constraints. 

The post-contingency equations are modelled through the post-contingency 

generation constraints of (4.3)–(4.6), transmission limit constraints of (4.7)–(4.8) and 

nodal power balance constraint of (4.11). (4.3)–(4.4) is the 10-minute ramp up/down 

limit, (4.5)–(4.6) models the minimum and maximum limit of the generator. (4.7) 

represents the DC line-flow calculation and the contingent transmission element lost is 

represented by (4.8). (4.9)–(4.10) enforce the emergency rating of the transmission 

element. Finally, (4.11) represents that the nodal power balance in the post-contingency 

case. If PCFC fails feasibility, the respective sub-problem c,t will be recorded to set 

Ω1
𝑖𝑛𝑓

 along with respective cut in the cut-set, 𝜓. Fig. 4.2 depicts the flow of PCFC. 
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Fig. 4.2 Procedural flowchart for PCFC.  

4.3.2. NR-PCFC Model 

The goal of network-reconfigured post-contingency feasibility check is to 

check system feasibility with CNR for the set Ω1
𝑖𝑛𝑓

. (4.12)–(4.22) models NR-PCFC 

that is similar to PCFC except for (4.17) and (4.19). The feasibility is checked by 

switching one non-radial transmission element at a time from the network. The line to 

be switched is chosen from closest branches to contingency element (CBCE) list or 

complete enumeration (CE) of non-radial lines [43]. For each scenario (with line j 

removed from the network), NR-PCFC minimizes the slack variable, 𝑠2, which 

represents the feasibility of the problem. If 𝑠2 is 0, then the specific scenario for the 

respective sub-problem is feasible and for all other values of 𝑠2, it is infeasible. If the 

sub-problem is feasible for one such scenario, then the sub-problem c,t is feasible 
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through CNR and is removed from the cut-set,  𝜓 , obtained from PCFC. Record the 

line selected from the CBCE/CE list that facilitates CNR. If no switching scenario leads 

to a feasible solution for sub-problem c,t, then the infeasible sub-problem will be 

recorded in set Ω2
𝑖𝑛𝑓

. Fig. 4.3 depicts the flow of NR-PCFC and the NR-PCFC objective 

is described by, 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑠2. (4.12) 

The objective is subject to post-contingency generation modeling for a given 

contingency c in time-period t in set Ω1
𝑖𝑛𝑓

 and is modelled with, 

 −𝑃𝑔,𝑐,𝑡 + 𝑠2(𝑅𝑔
10𝑢𝑔,𝑡

𝑀𝑈𝐶 −  𝑃𝑔,𝑡
𝑀𝑈𝐶) ≤ 𝑅𝑔

10𝑢𝑔,𝑡
𝑀𝑈𝐶 −  𝑃𝑔,𝑡

𝑀𝑈𝐶 , ∀𝑔, (4.13) 

 𝑃𝑔,𝑐,𝑡 + 𝑠2(𝑅𝑔
10𝑢𝑔,𝑡

𝑀𝑈𝐶 +  𝑃𝑔,𝑡
𝑀𝑈𝐶) ≤ 𝑅𝑔

10𝑢𝑔,𝑡
𝑀𝑈𝐶 + 𝑃𝑔,𝑡

𝑀𝑈𝐶 , ∀𝑔, (4.14) 

 𝑃𝑔
𝑚𝑖𝑛𝑢𝑔,𝑡

𝑀𝑈𝐶 ≤ 𝑃𝑔,𝑐,𝑡 + 𝑠2(𝑃𝑔
𝑚𝑖𝑛𝑢𝑔,𝑡

𝑀𝑈𝐶), ∀𝑔,  (4.15) 

and  

 𝑃𝑔,𝑐,𝑡 + 𝑠2(𝑃𝑔
𝑚𝑎𝑥𝑢𝑔,𝑡

𝑀𝑈𝐶) ≤ 𝑃𝑔
𝑚𝑎𝑥𝑢𝑔,𝑡

𝑀𝑈𝐶 , ∀𝑔.  (4.16) 

Along with generation model, the post-contingency modeling of power flow for non-

radial lines for a given contingency c in time-period t in set Ω1
𝑖𝑛𝑓

 and line j from 

CBCE/CE is considered in, 

𝑃𝑘,𝑐,𝑡 − 𝑏𝑘(𝜃𝑛,𝑐,𝑡 − 𝜃𝑚,𝑐,𝑡) =  0, ∀𝑘 𝜖
𝐾

{𝑐,𝑗}
,  (4.17) 

𝑃𝑐,𝑐,𝑡 = 0,  (4.18) 
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𝑃𝑗,𝑐,𝑡 = 0,  (4.19) 

−𝑃𝑘
𝑒𝑚𝑎𝑥  ≤  𝑃𝑘,𝑐,𝑡 − 𝑠2(𝑃𝑘

𝑒𝑚𝑎𝑥), ∀𝑘,  (4.20) 

𝑃𝑘,𝑐,𝑡 + 𝑠2(𝑃𝑘
𝑒𝑚𝑎𝑥) ≤ 𝑃𝑘

𝑒𝑚𝑎𝑥 , ∀𝑘,  (4.21) 

and 

∑ 𝑃𝑔,𝑐,𝑡𝑔∈𝑔(𝑛) + ∑ 𝑃𝑘,𝑐,𝑡𝑘∈𝛿+(𝑛) − ∑ 𝑃𝑘,𝑐,𝑡𝑘∈𝛿−(𝑛) + 𝑠2(𝑑𝑛,𝑡) = 𝑑𝑛,𝑡, ∀𝑛.  (4.22) 

 

Fig. 4.3 Procedural flowchart for NR-PCFC.   

4.3.3. Critical Sub-Problem Screener (CSPS) Model 

The purpose of the critical sub-problem screener (CSPS) is to screen out non-

critical sub-problems before PCFC and NR-PCFC. Post-contingent line flows critical 

set, Ω𝑐𝑟𝑖, are obtained through the predetermined line outage distribution factor 

(LODF) of the network, (4.23),  

𝑃𝑘,𝑐,𝑡 =  𝑃𝑘,𝑡
𝑀𝑈𝐶 +  𝐿𝑂𝐷𝐹𝑘,𝑐(𝑃𝑐,𝑡

𝑀𝑈𝐶), ∀𝑘   (4.23) 
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The contingent line flows are then compared against the emergency line limit 

for violations. The non-critical sub-problems determined by CSPS are removed from 

the set Ω𝑐𝑟𝑖 leaving only critical problems. Fig. 4.4 depicts the flow of CSPS. 

   

Fig. 4.4 Procedural flowchart for CSPS. 

4.4. Iterative Decomposition Approaches  

This chapter compares the extensive formulations against decomposition 

approaches of SCUC and SCUC-CNR and details the benefits of decomposed 

approaches. The extensive formulations were discussed in Chapter 2. The 

decomposition approaches to SCUC and SCUC-CNR are explained in the following 

sub-sections. This paper proposes two decomposed approaches for SCUC namely: a 

typical-decomposition approach to SCUC (T-SCUC) and an accelerated-
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decomposition approach to SCUC (A-SCUC). Along with the above proposed 

methods, this paper also proposes two decomposed approaches for SCUC-CNR which 

perform network reconfiguration as a corrective action namely: typical-decomposition 

approach to SCUC-CNR (T-SCUC-CNR) and accelerated-decomposition approach to 

SCUC-CNR (A-SCUC-CNR). The proposed approaches are explained through the 

decomposed-features of master and sub-problems explained in sub-sections 4.3.1–

4.3.3.   

4.4.1. Typical-Decomposition Approach 

The proposed typical-decomposition approach by using MUC and PCFC only 

for SCUC whereas SCUC-CNR also utilizes NR-PCFC. The MUC problem is initially 

solved to obtain the generator commitment and base-case output. The feasibility of 

each sub-problem in set Ω𝑐𝑟𝑖 is checked by post-contingency generation redispatch 

implemented by PCFC. For the typical-decomposition approach, the set Ω𝑐𝑟𝑖 holds the 

complete list of all sub-problems and the set Ω1
𝑖𝑛𝑓

 is an empty set at the beginning of 

each iteration. When the feasibility of a sub-problem is not achieved, it is recorded in 

the set Ω1
𝑖𝑛𝑓

.  

For SCUC, once all sub-problems are examined, an iteration is completed. The 

infeasible sub-problem are recorded in set Ω1
𝑖𝑛𝑓

 at the end of each iteration. The 

problem is converged when set Ω1
𝑖𝑛𝑓

 is empty at the end of an iteration. 
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For SCUC-CNR, the set Ω1
𝑖𝑛𝑓

 is passed on to NR-PCFC and feasibility of each 

sub-problem is examined with CNR. If the sub-problem is infeasible then it is recorded 

in set Ω2
𝑖𝑛𝑓

. Once all sub-problems in set Ω1
𝑖𝑛𝑓

 are checked, an iteration is completed.  

The respective cuts for infeasible sub-problems in set Ω1
𝑖𝑛𝑓

 for SCUC and 

infeasible sub-problems in set Ω2
𝑖𝑛𝑓

 are formed using the dual value of (4.2)–(4.11) and 

added as (4.1), respectively, after each iteration. 

4.4.2. Accelerated-Decomposition Approach 

Accelerated-decomposition approach uses MUC, CSPS and PCFC only for 

SCUC whereas SCUC-CNR also utilizes NR-PCFC. The flow of this approach is 

similar to typical-decomposition approach, but it is substantially sped through the 

CSPS, an accelerator to reduce the computational burden by identifying critical sub-

problems. The MUC problem is initially solved to obtain the generator commitment 

and base-case output. With the MUC schedule, the critical sub-problems are identified 

and recorded in set Ω𝑐𝑟𝑖 by using CSPS. Only the critical sub-problems, rather than all 

sub-problems, are then checked by post-contingency generation redispatch through 

PCFC. 

4.4.3. Proposed Methods  

Fig. 4.5 represents the flow of the proposed typical decomposition approach 

and proposed accelerated-decomposition approach to SCUC/SCUC-CNR and the 
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pseudo-code is represented in Algorithm 4.1 where (i) A-SCUC-CNR is implemented 

using lines 1–35; (ii) T-SCUC-CNR is implemented through lines 1–5 and 12–35; (iii) 

T-SCUC is implemented by lines 1–5, 13–14, 24, and 26–35; and (iv) A-SCUC is 

implemented through lines 1–15 and 23–35. 

 

 

Fig. 4.5. Flowchart of typical-decomposition approach to SCUC. 
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Algorithm 4.1 Accelerated-decomposition approach to SCUC-CNR 

1: Solve MUC and obtain the commitment and dispatch 

2: repeat 

3:   cut = ∅; 

4:   for all t ∈ T do 

5:   for all c ∈ C do 

6:    solve CSPS(c,t) 

7:    for all k ∈ K do 

8:     if 𝑃𝑘,𝑐,𝑡 violation then 

9:      record (c,t) in set Ω𝑐𝑟𝑖     

10:     end if 

11:    end for 

12:    for all (c,t) ∈ Ω𝑐𝑟𝑖 do 

13:     solve PCFC(c,t) 

14:     if PCFC(c,t) is infeasible then 

15:      Flag = false 

16:      for line j ∈ CBCE do 

17:       Remove line j from topology  

18:                      solve NR-PCFC(j,c,t) 

19:       if NR-PCFC(j,c,t) feasible then 

20:        Flag = true; break  

21:       end if 

22:      end for 

23:      if Flag = false then 

24:       {cut} = {cut} + {cut of PCFC(c,t)} 

25:      end if 

26:     end if 

27:    end for 

28:   end for 

29:  end for  

30:  if {cut} != ∅ then 

31:   add cut to MUC; solve updated MUC 

32:  else 

33:   problem converged; report results; break 

34:  end if  

35: until converged  
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4.5. Testcase Summary 

The proposed methods, T-SCUC/A-SCUC and T-SCUC-CNR/A-SCUC-CNR 

were validated against the extensive formulation detailed in SCUC and SCUC-CNR, 

respectively, on the IEEE 24-bus system with 33 generators and 38 branches [63]. The 

network includes a total generation capacity of 3,393 MW and the system peak load is 

2,265 MW. Furthermore, the IEEE 73-bus system and the Polish system were utilized 

to show the effectiveness and scalability of T/A-SCUC-CNR. Table 4.1 summarizes 

the test systems.  

The IEEE 73-bus system consists of 99 generators and 117 branches [63]. The 

total generation capacity is 10,215 MW and the system peak load is 8,550 MW. The 

Polish system, modified to include default min-up/min-down times and ramp-up/ramp-

down limits, is used for demonstrating the scalability of the algorithm. It is the largest 

system used for this work and it consists of 2,383 buses, 327 generators and 2,895 

branches [93]. The total generation capacity is 30,053 MW serving a system peak load 

of 21,538 MW. Two cases of the Polish system, covering a single-hour period and a 

24-hour period respectively, are considered. The single-hour period case is effective to 

compare performance against smaller systems whereas scalability is shown through the 

24-hour period case. To demonstrate CNR, only non-radial transmission line 

contingencies are considered in the N-1 SCUC formulation since contingency of radial 

lines will lead to islanding and system separation; this is consistent with industrial 
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practice. Similarly, CNR actions, at most one action per contingency, considers only 

non-radial lines as possible reconfiguration actions for the same reason.  

In addition, the IEEE 118-bus system with 54 generators and 186 branches, 

[93], was also considered to draw comparison with state-of-the-art methods to show 

the efficacy of proposed methods. However, the IEEE 118-bus system lacks the 

generator data and thermal limits and thus it was modified to include such information. 

Table 4.1. Test System Summary 

System Pgen (GW) Pload (GW) # bus #gen 
# 

branch 

# radial 

branch 

IEEE 24 ~3.4 ~2.1 24 33 38 1 

IEEE 73 ~10.2 ~8.6 73 99 117 2 

IEEE 118 ~5.8 ~3.1 118 54 186 7 

Polish ~30.1 ~21.5 2,383 327 2,895 644 

 

4.6. Results and Analysis 

The mathematical model is implemented using AMPL and solved using Gurobi. 

The models were run on a computer with Intel® Xeon(R) W-2195 CPU @ 2.30GHz; 

the CPU contains 24.75 MB of cache and 128 GB of RAM. The proposed methods 

were initially validated, following which sensitivity analysis, scalability and market 

impact are discussed. 
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4.6.1. Algorithm Validation  

Since the proposed methodologies are all iterative in nature, an accuracy 

validation was performed to test the robustness against non-iterative extensive 

formulations. A MIPGAP of 0.00 was utilized on the congested network of IEEE 24-

bus system for 24-hour period and the SCUC results are tabulated in Table 4.2 and 

SCUC-CNR results are tabulated in Table 4.3. It was observed from Table II that the 

results for SCUC, T-SCUC and A-SCUC are the same. Similarly, the solutions 

obtained from SCUC-CNR, T-SCUC-CNR and A-SCUC-CNR are the same.  

The results presented in Table 4.2 and Table 4.3 prove that the proposed typical-

decomposition and accelerated-decomposition methods are significantly faster for the 

same solution than extensive formulations of SCUC and SCUC-CNR respectively. It 

is intuitive that incorporating CNR will lead to additional computational complexity, 

which is demonstrated by the observation that the computing time of SCUC-CNR is 

longer than SCUC. However, it is the other way for the proposed approaches: the 

computational time for solving T/A-SCUC-CNR is much less than that for T/A-SCUC. 

The reason is that the addition of NR-PCFC sub-problem in addition to PCFC in T/A-

SCUC-CNR leads to increased feasibility region of the sub-problems and reduced 

number of cuts and iterations.  
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Table 4.2. SCUC Accuracy on IEEE 24-Bus System 

MIPGAP=0.00 SCUC T-SCUC A-SCUC 

Total cost ($) 963,893 963,893 963,893 

Solve time (s) 6,013 2,440 1,351 

 

Table 4.3. SCUC-CNR Accuracy on IEEE 24-Bus System 

MIPGAP=0.00 SCUC-CNR T-SCUC-CNR A-SCUC-CNR 

Total cost ($) 928,794 928,794 928,794 

Solve time (s) 9,625 47 9 

 

4.6.2. AC Feasibility for CNR Solutions 

Since the proposed methodologies are for a DC solution which is utilized in the 

industry for unit commitment, an AC feasibility check was performed to validate the 

CNR benefits. An example from the post-contingent sub-problems is presented in this 

subsection. Fig. 4.6 and Fig. 4.7 shows the MW flow as a percentage of line loading of 

lines close to the contingent line 27 in both DC solution and AC solution for IEEE 24-

bus system, respectively. It was also noted that line 23, connecting the high-voltage 

and low-voltage regions, is the main bottleneck line in the IEEE 24-bus system in most 

of the critical contingencies. The CNR solution provided is line 37 as a congestion 

relief option in post-contingency phase. It can be observed from the line loading level 

for DC and AC solution that the benefits offered by CNR solution is not lost in an AC 

setting. 
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As stated earlier, the CNR action is only performed when there is a line 

congestion or overload after a contingency. From Fig. 4.6, we notice that the DC 

solution resulted in line overload in a post-contingency case for line 23 which is at 

109%. The CNR action of switching line 37 resulted in flow redistribution in the 

network which relieves the line violation and brings the flow on line 23 to 100%.  

An AC feasibility check for the above DC solution was verified and Fig. 4.7 

represents the line loading in an AC setting. Here, line 23 is violated with a post-

contingent flow of 108% after the contingency of line 27. Similarly, the CNR action of 

line 37 alleviates the violation on line 23 and results in a line-loading of 99.4%. This 

implies a similar decrease of ~9% is achieved with CNR action in both DC and AC 

setting for the violated line 23. The benefit of CNR is not lost in an AC solution as 

shown in Table 4.4. Moreover, the results showed that the MW flow on the lines were 

similar for most lines in both the AC and DC solutions. Therefore, the DC 

approximation holds well even when CNR is implemented. 

Table 4.4. Line Loading of Line 23 In IEEE 24-Bus System 

Solution Post-contingency Post-reconfiguration 

DC 109 % 100 % 

AC 108 % 99.4 % 
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Fig. 4.6. Line loading for DC solution in IEEE 24-bus system. 

 

 

Fig. 4.7. Line loading for AC solution (MW only) in IEEE 24-bus system. 

4.6.3. MIPGAP Sensitivity Analysis  

The MUC MIPGAP, µ, affects the performance of all the methods. Specifically, 

increasing the µ increases the total cost. The change in cost (ΔCost) in total cost is 

calculated with (4.24),  

𝛥𝐶𝑜𝑠𝑡µ =
𝐶𝑜𝑠𝑡µ −  𝐶𝑜𝑠𝑡µ=0

𝐶𝑜𝑠𝑡µ=0
, (4.24) 
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and is shown in Fig. 4.8. The solve-time decreases significantly as shown in Fig. 4.9 

with respect to µ.  

Based on the sensitivity analysis, µ=0.01 provides reasonable maximum cost 

change of ~0.4% in a short time. However, the performance of the proposed 

methodologies implementing CNR fares well under tighter tolerances if higher 

accuracy is required. For the rest of the paper, µ=0.01 is used. 

 

Fig. 4.8 Change in cost (ΔCost) versus MIPGAP µ on IEEE 24-Bus System. 
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Fig. 4.9 Solve time versus MIPGAP µ on IEEE 24-Bus System. 

4.6.4. Load Sensitivity Analysis  

Four scenarios were considered: two low-load/uncongested scenarios (80%, 

90%), a base-load scenario (100%) and a high-load scenario (110%). The load profile 

was varied using a percentage multiplied to the nodal load. Table 4.5 shows the total 

cost for various methods under different load profiles. 

In the low-load scenarios (80%, 90%), it is evident that CNR is never 

implemented as there are no post-contingency line flow violations. CNR actions are 

observed in base-load and high-load scenarios (100%, 110%) where the network 

reconfiguration is utilized to relieve system congestion. This allows cheaper generators 

to produce more power, resulting in a reduced total operational cost. Interestingly, 

without CNR, the demand cannot be met due to network congestion. The difference in 
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total cost for load profile 90% and 100% in N-1 SCUC and N-1 SCUC-CNR can be 

attributed to non-zero MIPGAP. 

Table 4.5. Load Sensitivity Analysis on IEEE 24-Bus System   

Load Profile 

(%) 

Total operational cost ($) 

N-1 SCUC 
N-1 SCUC-

CNR 

BDA N-1 

SCUC 

EBDA N-1 

SCUC-CNR 

80 467,883 467,883 467,883 467,883 

90 624,398 623,458 624,398 623,459 

100  963,893 931,224 963,893 932,919 

110 Infeasible 1,424,140 Infeasible 1,424,140 

 

4.6.5. Scalability Studies  

One of the key research gaps is the lack of an effective algorithm for solving 

SCUC-CNR that is scalable for large-scale power systems and solvable in realistic 

time. Table 4.6 and Table 4.7 tabulate the performance of SCUC and SCUC-CNR on 

IEEE 73-bus system respectively. Table 4.6 points that the extensive formulation of 

SCUC, requires a good starting point to solve in 7,743 seconds. One approach to have 

a good starting solution is to utilize the commitment and dispatch results obtained from 

the relaxed MUC problem. However, without a starting solution, even SCUC proves to 

be infeasible in 100,000 seconds. A default starting solution can also be utilized where 

all generators are committed, which results in feasibility within 1% optimality gap in 

about 30,000 seconds that is still impractical. In the execution of the proposed 
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decomposition approaches, a starting point solution is not considered and yet a feasible 

solution can be achieved faster. Based on Table 4.7, the starting point has a significant 

influence on a large optimization problem, and it can be considered for T/A-SCUC and 

T/A-SCUC-CNR. Since the proposed decomposition approaches are iterative in nature, 

the best starting point can be obtained from the MUC solution from previous iteration. 

This may lead to further reduction in computational time. Also, the sub-problems are 

sequentially solved, and a parallel solving can speed up the algorithm.  

Table 4.6. Scalability Of SCUC to IEEE 73-Bus System 

MIPGAP=0.01 SCUC T-SCUC A-SCUC 

Total cost ($) 3,224,980 3,223,760 3,223,760 

Solve time (s) 7,743 1,273 367 

Feasibility Feasible Feasible Feasible 

Starting point Yes No No 

 

Table 4.7 shows that SCUC-CNR lacks scalability as it times out without a 

feasible solution for the IEEE 73-bus system when solved for 100,000 seconds with a 

good starting solution. Table 4.8 describes the complexity of the unit-commitment 

problem with respect to size of equalities, inequalities, binary variables and, continuous 

variables problem for IEEE-73 bus system. It is evident that a SCUC problem without 

N-1 constraints has 13,707 variables, and 24,792 constraints. Once N-1 constraints are 

included, the variables and constraints are significantly increased for the SCUC 
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problem to 799,515and 1,555,824, respectively. Additionally, if CNR is included in 

this problem, then the variables and constraints increase exponentially to 1,121,747 and 

2,517,160, respectively. Since the problem complexity increases exponentially with the 

addition reliability and new technologies, the SCUC-CNR is not scalable to obtain a 

feasible solution in a practical time. However, with decomposition and acceleration, 

this issue with complexity can be addressed with the proposed T/A-SCUC-CNR.   

Table 4.7. Scalability SCUC-CNR to IEEE 73-Bus System 

MIPGAP=0.01 SCUC-CNR T-SCUC-CNR A-SCUC-CNR 

Total cost ($) NA 3,218,980 3,218,980 

Solve time (s) 100,000 392 168 

Feasibility Timeout Feasible Feasible 

Starting point Yes No No 

 

Table 4.8. Problem Complexity for IEEE 73-Bus System 

Model Element SCUC SCUC SCUC-CNR 

N-1 constraints No Yes Yes 

Binary Variables 4,539 4,539 326,771 

Continuous Variables 9,168 794,976 794,976 

Equality Constraints 4,560 525,432 205,272 

Inequality Constraints 20,232 1,030,392 2,311,888 
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T/A-SCUC and T/A-SCUC-CNR are scalable to large networks such as the 

Polish system. Fig. 4.10 plots the solve time with respect to the size of the network. 

T/A-SCUC and T/A-SCUC-CNR are iterative in nature and Fig. 4.11 plots the number 

of iterations to solve the problem with respect to the size of the network. Due to the 

size of the Polish system, the 1-hour Polish case is utilized in Fig. 4.10 and Fig. 4.11 

rather than the 24-hour Polish case to compare the performance with smaller systems. 

Here, it is noted that T/A-SCUC that do not perform CNR require more iterations to 

converge. The transmission flexibility obtained through implementing CNR in T/A-

SCUC-CNR is evident from fewer iterations required to converge to a feasible solution 

with desired accuracy. This also means that the MUC problem that is more 

computationally intensive compared to sub-problems is solved fewer times, which 

saves a substantial amount of computational time. In addition, the number of cuts 

generated from infeasible post-contingency sub-problems for T/A-SCUC-CNR are also 

less than T/A-SCUC. In other words, the number of constraints added to the MUC 

problem for each iteration for T/A-SCUC-CNR is less than T/A-SCUC, which may 

lead to a less complex MUC problem and require less time to solve the MUC for each 

iteration for T/A-SCUC-CNR. The total number of cuts added to MUC for those 

decomposition methods is presented in Table 4.9. 
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Table 4.9.  Sub-Problem and Cut Details 

 IEEE 24-Bus  IEEE 73-Bus Polish 1-Hr 

 

T/A-

SCUC 

T/A-

SCUC-

CNR 

T/A-

SCUC 

T/A-

SCUC-

CNR 

T/A-

SCUC 

T/A-

SCUC-

CNR 

# cuts 198 42 65 17 76 14 

α NA 16 NA 20 NA 57 

α in this table denotes number of sub-problems that were infeasible for post-contingency constraints 

without CNR but were feasible with CNR. 

 

 
Fig. 4.10  Solving time versus system size. 
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Fig. 4.11  Number of iterations versus size of the network. 
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MUC problem in A-SCUC is more constrained and takes longer to solve when 

compared to the MUC problem in T/A-SCUC-CNR. Not only that, the flexibility 

offered by CNR is evident by the following fact: out of 829 sub-problems that failed 

PCFC, 637 sub-problems are feasible with CNR through NR-PCFC, which implies 

about 77% of contingencies that failed feasibility in post-contingency check becomes 

feasible when CNR actions were implemented. Moreover, T/A-SCUC-CNR converge 

faster and require only 2 iterations against A-SCUC that requires 14 iterations. This 

implies the complex MUC problem is solved fewer times with T/A-SCUC-CNR 

leading to significant reduction in computational time.  

The consideration of network reconfiguration for post-contingencies to 

alleviate network congestion in the large-scale Polish system for 24-hour period leads 

to a cost saving of $14,890. It is to be noted that the results present an exhaustive 

monitoring of all non-radial transmission elements: 2,250 non-radial lines for the Polish 

system. This leads to 54,000 sub-problems for a 24-hour period per iteration whereas 

only 1,761 sub-problems were swiftly deemed as critical by CSPS. Subsequently, 

PCFC checked those 1,761 sub-problems and identified 829 sub-problems that failed 

feasibility check. The NR-PCFC that verifies feasibility of these contingencies with 

network reconfiguration further reduced the number of cuts required to be added to 

192. Therefore, 637 sub-problems satisfied feasibility of post-contingency constraints 

by modifying the network topology. Though those 637 sub-problems that implemented 

CNR actions amounts to only 1.18% of all the sub-problems considered in the first 
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iteration, considerable economic benefits are achieved with T/A-SCUC-CNR over A-

SCUC. The solve time can be further significantly reduced if only a watch-list of key 

contingent lines are monitored as this will reduce the number of sub-problems 

drastically. 

Table 4.10. Scalability To Polish System For 24-Hour Period 

Parameters A-SCUC T-SCUC-CNR A-SCUC-CNR 

Total Cost ($) 5,350,220 5,335,330 5,335,330 

€ ($) NA 14,890 (0.28%) 14,890 (0.28%) 

Time (s) 15,133.9 59,473.1 6,257.3 

δ 0.04% 0.12% 0.12% 

Iterations 14 2 2 

# CNR NA 637 637 

# Cuts 1,499 192 192 

€ denotes the cost saving for T/A-SCUC-CNR as compared to A-SCUC. δ denotes the 

MIPGAP of the reported solution of MUC in the last iteration. 

4.6.6. Congestion Cost and Market Analysis  

The contingency-induced congestion cost (CICC) is calculated as the difference 

in total operation cost when emergency post-contingency line limits are imposed (𝑇𝐶) 

and not imposed (𝑇𝐶𝑁𝑜𝐸𝐿) as represented in (4.25). The scenario when post-

contingency emergency limits are not imposed is used as a benchmark since it is 

equivalent to implying that the system is not congested in the post-contingency 
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situations. A-SCUC and A-SCUC-CNR are considered since we are interested in 

calculating the amount of CICC reduced when CNR is implemented where, 

𝐶𝐼𝐶𝐶 = 𝑇𝐶 − 𝑇𝐶𝑁𝑜𝐸𝐿 . (4.25) 

From Fig. 4.12, the IEEE 24-bus system was the most congested system with a 

contingency-induced congestion cost of $35,099 due to the considered load profile 

along with lower transmission capability. This was followed by the 73-bus system and 

1-hour polish system with $4,550 and $4,150 respectively. The CC is considerably 

reduced in all the cases by 88%, 100% and 74% respectively. This is significant in 

heavily congested system as seen in the case of IEEE 24-bus system where $30,794 is 

saved. 

  

Fig. 4.12 CICC reduction for the IEEE 24-bus, IEEE 73-Bus and Polish systems. 

The market implication of reduction in CICC can be seen through the impact of 

CNR on nodal locational marginal prices (LMP). Table 4.11 shows the average nodal 

LMP calculated in various systems when CNR is not used and when CNR is 

implemented. Overall, it is observed that with CNR, (i) the average nodal LMP is 

reduced and (ii) the nodal LMP curve is flattened. It can be noted that congestion relief 
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has a direct impact on the reduction in average nodal LMP. Similarly, it is also noted 

that the load payment is significantly reduced with CNR. Table 4.12 shows the total 

load payment for each test system with and without CNR. CNR resulted in a load 

payment reduction of $58,840 in the IEEE 24-bus system, $1,576,880 in the IEEE 73-

bus system and $3,977 in the 1-hour Polish system, which correspond to percentage 

reductions of around 5.0%, 20.1% and 1.1% respectively. This makes sense since 

compared to the IEEE test systems, (i) the production cost of generators in the Polish 

system is low, (ii) the variation of system-wide generation cost in the Polish system is 

small, and (iii) the Polish system is loaded. 

Table 4.11. Average Nodal Locational Marginal Price ($/MWh) 

Test System 

A-SCUC A-SCUC-CNR 

Mean Min Max StdD Mean Min Max StdD 

IEEE 24-Bus 23.39 5.46 150.6 0.86 23.23 5.46 150.6 0.84 

IEEE 73-Bus 42.75 9.5 648.4 1.36 42.19 4.9 582.4 1.34 

Polish (1-hour) 17.72 15.7 20.8 0.24 17.56 17.2 17.8 0.19 

 

Table 4.12. Load Payment ($) 

Test System A-SCUC A-SCUC-CNR 

IEEE 24 Bus 1,171,220 1,112,380 

IEEE 73 Bus 7,840,770 6,263,970 

Polish (1-hour) 372,740 368,763 
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4.7. Summary 

This chapter proposes typical-decomposition and accelerated-decomposition 

approaches of SCUC and SCUC-CNR. The proposed decomposition approaches are 

generic and can be implemented to both SCUC and SCUC-CNR while outperforming 

the extensive formulations of SCUC and SCUC-CNR, respectively, in terms of (i) 

computational speed, (ii) algorithm scalability, and (iii) solution quality.  

The accelerated-decomposition approach can easily link multiple accelerators 

to substantially reduce solution time. Specifically, CSPS, an exhaustive fast screening 

of sub-problems accurately identifies the critical contingent sub-problems which can 

lead to system overload or congestion. In addition, the A-SCUC-CNR benefits in 

computational speed achieved from ordered list, CBCE, for corrective actions. 

The proposed A-SCUC-CNR utilizing the proposed accelerators, CSPS and 

CBCE, can solve a large-scale power system for 24-hour period in a reasonable time. 

As compared to T-SCUC-CNR, the proposed A-SCUC-CNR achieves a reduction of 

about 90% in the computational time without compromising solution accuracy. It can 

be noted that parallel solving of sub-problems was not considered in this paper and can 

provide additional computational time savings in future. 

It was noted that implementation of CNR can achieve significant cost saving 

and provide feasible solutions for high critical demands where there are no feasible 

solutions without CNR. In addition, A-SCUC-CNR can provide high quality solutions 

much faster than the A-SCUC since fewer iterations are required. The load payment is 
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dramatically reduced with CNR. A load payment reduction of 1%–20% can be realized 

for various networks. Mainly, the advantage of the proposed A-SCUC-CNR is that it 

provides quality solutions in a reasonable short time while dramatically reducing post-

contingency network constraints induced congestion cost by 75%–100% in various 

scenarios. As a result, the total operation cost is reduced with CNR for congested 

networks. 
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5. MACHINE LEARNING APPLICATIONS FOR SCUC 

The short-term power system operation is a complex process which begins with 

day-ahead markets where generator schedules are identified for the least operational 

cost. Here, unit commitment is an optimization problem utilized to meet the supply and 

demand for tomorrow’s need. The day-ahead market is responsible for scheduling and 

commit majority of the demand requirement making it a vital step in power system 

operations. Since the optimization problem involves the ON/OFF status of generators, 

it involves binary variables and constraints making the problem a mixed-integer linear 

program (MILP). However, MILP makes the problem harder to solve typically for 

larger systems. Moreover, there are several security constraints and physical constraints 

to adhere with to ensure reliable and low-cost solutions. Thus, the resulting MILP is a 

security-constrained unit commitment (SCUC) [24],[76], [94]–[95] and [96]. In the 

deregulated regions in the United States, SCUC is solved by independent system 

operators (ISOs). ISOs have strict timelines to produce results for example, California 

ISO closes the input bids by 10:00 am and posts the schedules by 01:00 pm whereas 

New York ISO collects the bids by 05:00 am and posts solution by 08:00 am. This 

implies that the day-ahead market is cleared, and the commitment schedules are 

provided in 3 hours [7]–[8]. Here, state-of-the-art algorithms are required to provide 

significant time saving benefits without loss in solution quality. Therefore, several 

heuristic or decomposition-based algorithms were proposed to obtain the solution faster 
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[57],[75]–[74]. However, techniques involving machine learning (ML) to enhance 

SCUC were seldom studied. In comparison, learning historical information can be 

beneficial in reducing the complexity of the SCUC. Not only that, learning-based 

methods can also be used in tandem with other heuristic or decomposition to obtain 

further improvements. 

ML has two broad classes of problems namely, regression and classification. In 

regression models estimate continuous values whereas classification models 

approximate a mapping function from input variables to identify discrete output 

variables, which can be labels or categories. Since generator status is binary in nature, 

therefore we predict whether the generator is ON/OFF. This implies that the outputs of 

ML model belong to a binary category. Hence, this chapter focuses on classification 

rather than regression. For classification, several standard algorithms exist, namely 

decision tree classification, random forest classification and K-nearest neighbor 

classification. Even though these are well-established models but are still prone to 

errors. Since ML models are not 100% accurate, relying on these standard algorithms 

does not provide flexibility to adapt to the task at hand. For these reasons, logistic 

regression, neural networks and spatio-temporal models are proposed. This is because 

the proposed models have a sigmoid output layer which restricts the output between 0 

and 1. In other terms, it inherently results in probabilistic outputs which can be 

leveraged for post-processing the ML predictions with a decision boundary to 
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selectively use ML predictions of high accuracy. The proposed models are discussed 

in detail in the subsequent sections.  

5.1. Literature Review 

An important factor for ML methods is the availability of good data and the 

right models for training to provide high quality outputs. Since the SCUC is run daily, 

the historical information can be leveraged to learn non-linear relationships between 

inputs and outputs. ML has been successfully utilized in the prediction or decision 

support in complex problems in various power system fields [97]–[101]. The advantage 

of ML is that once the model is trained the outputs can be obtained instantaneously for 

similar inputs. Since ML uses large amounts of data to train, it can be robust to noisy 

data. Therefore, combining ML techniques with traditional algorithms such as SCUC 

can improve the overall performance [102]–[120].  

The SCUC problem consists of parameters (known fixed values), variables 

(continuous and binary) and constraints (equalities and inequalities). The SCUC 

problem can have multiple feasible solutions but the optimal commitment and dispatch 

schedule leads to the lowest-cost solution. ML techniques and data-driven approaches 

have been utilized recently in aiding or replacing the SCUC process. However, most 

papers predominantly focus only on replacing the MILP with ML [103]–[105] or 

screening redundant constraints [106]–[114]. In particular, replacing SCUC with ML 

techniques can definitely provide the most time-saving benefits but it can never 
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guarantee feasibility, and/or optimality. An infeasible solution is not a practical solution 

since several physical constraints can be breeched and [103]–[105] did not compare the 

solutions with the respective MILP solutions.  

The papers proposing screening of constraints mostly focus only on removing 

redundant transmission constraints in SCUC. In [106], a good starting solution was 

achieved for SCUC by integrating data-driven approach along with variable 

categorizing to improve the computational performance of SCUC. In [107], historical 

data was utilized to screen transmission constraints that are non-binding in the SCUC 

to speed up the process. Similarly, [108] uses an offline ML tool to learn about outage 

schedules and identifies planned outages. In [109], the authors perform a feasibility 

study where they mention that ML techniques cannot guarantee optimality and hence 

can only be used for warm-start application. The same authors in [110] then use ML 

techniques to identify line outages under drastic weather conditions for stochastic 

SCUC to eliminate congested transmission constraints. In [111], the optimization is 

benefitted by replacing few active and inactive constraints line-flow constraints by 

cost-based inequality through ML. In [112], a two-step offline and online process is 

implemented where the offline process screens security constraints for SCUC whereas 

this further screened in real-time in the security-constrained economic dispatch 

(SCED). Similarly, [113] performs screening only for SCED which does not bring 

about much time-saving benefits whereas [114] creates artificial colorful images to 

utilize convolutional neural networks (CNN) in SCED to study the network constraints. 
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Though constraint screening relaxes the SCUC algorithm when aided by ML, 

they cannot offer a greater time-saving benefits than variable reduction by learning the 

commitment schedules as seen in [115]–[120]. This is because in constraint screening 

the feasibility region of the SCUC solutions remains unaltered and only redundant 

constraints or inactive constraints are eliminated. [115]–[117] tries to eliminate all 

binary variables in SCUC and perform SCED. This may work for smaller systems or 

eliminating temporal constraints (single period application) or if the dataset is 

invariable which is not practical. Hence, this does not guarantee feasibility of the SCUC 

problem. Only [118]–[120] performs a reduced-SCUC (R-SCUC) which were also 

tested on large practical systems and can be considered as the state-of-the-art methods. 

A few machine learning techniques are proposed in [119] to use historical information 

to improve the performance of SCUC to solve identical instances in the future. 

However, [119] uses support vector machine (SVM) and k-nearest neighbor (KNN) 

classification algorithms to learn commitment solutions for SCUC and yet are 

associated with drawbacks from infeasible problems. [120] utilizes an offline ML tool 

to categorize load profile into different categories with a pre-determined commitment 

schedule from history. However, [120] provides only a feasible solution and does not 

guarantee optimality or high solution quality. Also, the proposed methods in [118]–

[120] do not address renewable generation and only works on deterministic models. 

Renewable energy source (RES) is addressed in [121]–[122] albeit the proposed 

methods only learn the varying nature of renewables to identify a most likely scenario. 
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5.2. SCUC formulation 

The objective of the SCUC is to minimize the operational cost of generators, 

𝐹(𝑥, 𝑦) in (5.1),  

     𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹(𝑥, 𝑦),  (5.1) 

which includes the production, start-up and no-load costs. In (5.1), 𝑥 denotes the 

continuous variables of the problem such as generator dispatch points, power flows and 

bus phase angles; and 𝑦 denotes the generator commitment status and start-up binary 

variables. This is performed subject to generation limits, power flow constraints and 

reliability requirements in (5.2)–(5.3), 

 𝐺(𝑥, 𝑦) ≤ 𝑏, (5.2) 

and 

 𝐻(𝑥, 𝑦) = 𝑑.  (5.3) 

The inequality constraints are modelled in (5.2) representing the minimum and 

maximum generation and transmission limits, the hourly generation ramp capability, 

and emergency 10-min reserve ramping capability while ensuring that reserves are held 

at the least to handle the failure of the largest generator. The equality constraints in 

(5.3) represent the nodal power balance and the power flow calculation. The detailed 

SCUC model used in this work is the formulation consisting of equations (2.1)–(2.15) 

and for a multi-scenario stochastic-SCUC (SSUC) can be modelled with (3.1)–(3.16). 
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5.3. Data Generation 

To ISO’s run the SCUC daily, therefore, data related to daily load-profiles and 

respective cleared generator commitment and dispatch schedules are stored. This data 

is assumed to be the starting point for this work. To train ML models, a large amount 

of data is required. Hence, the SCUC model specified in Section-II is utilized to 

generate the data. By varying the input nodal load-profile, we can generate multiple 

optimal commitment and dispatch schedules for respective profiles that can be 

collected as historical information.  

It can be noted that RES can also be modelled in this step if the system has 

wind/solar units. The load profile then becomes a net-load profile with multiple 

scenarios. RES are integrated to SCUC with a multi-scenario stochastic approach in 

SCUC as seen in [76],[96] and only a single resultant commitment schedule satisfies 

all the scenarios.   

For the test systems considered in this study, the historical information is 

generated by modifying the nodal load profile artificially mimicking uncertainty. Since 

the test systems considered do not consist of the same information, a data creation step 

using the proposed BC-RPG method is required. To begin, a common load profile for 

each test system is considered with average seasonal peak information from [63]. If 

seasonal information are considered then average seasonal load-profile can be utilized 

and different ML models can be trained and stored for each season by curating the data 

into seasonal buckets, if needed. Once the standard profile is chosen, multiple profiles 
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can be generated using random variables as seen in (5.4) where the random variables, 

𝛼𝑚 and 𝛽𝑛,𝑡
𝑚 , shift the entire system load profile up/down or the composition of the system 

load profile can be altered, respectively,  

 

     𝑆𝑦𝑠𝐷𝑡
𝑚 = ∑ 𝑑𝑛,𝑡

𝑚
𝑛∈𝑁 = (∑ (𝑑𝑛,𝑡 + 𝛽𝑛,𝑡

𝑚 𝑑𝑛,𝑡)) ∗ (1 + 𝛼𝑚)𝑛∈𝑁 ,

∀𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 

(5.4) 

where,  

𝑆𝑦𝑠𝐷𝑡
𝑚 is the system demand in time period 𝑡 for sample 𝑚. 

𝛼𝑚 is a random variable (± 10%) for sample 𝑚. 

𝛽𝑛,𝑡
𝑚  is a random variable (± 4%) for sample 𝑚 for bus 𝑛 in time period 𝑡. 

Since demand profiles only change marginally day-to-day, the value for  𝛼𝑚 is 

considered to be ± 10%. Nodal values cannot be altered significantly as this would 

lose the correlation of nodal information. Therefore 𝛽𝑛,𝑡
𝑚  is considered to be ± 4%. The 

combination of both random variables provide varying load-profile curves. From Fig. 

5.1, for example, curve 1 represents the initial load profile whereas curve 2 and curve 

3 are generated only using only 𝛼𝑚, curve 4 is generated through only 𝛽𝑛,𝑡
𝑚 , and curve 5 

and curve 6 are generated using the combination of both random variables.   
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Fig. 5.1. Sample demand profile curves. 

Only feasible samples of the SCUC are considered and denoted as 𝑀 are created 

for each test system. The created 𝑀 samples, once shuffled, are split into two datasets: 

80% training samples denoted as 𝑀𝑡𝑟𝑎𝑖𝑛 and 20% testing samples denoted as 𝑀𝑡𝑒𝑠𝑡. 

5.4. Warm-Start vs Model Reduction 

A warm-start application provides a starting point for the optimization solver to 

begin with, which may converge faster to the optimal solution. Note that the optimal 

solution could be very different from the starting point. Traditionally, most of the 

literature uses a warm-start application citing that ML models leads to infeasible 

solution [101],[105]–[106]. It is true that ML cannot purely replace optimization 

procedures since ML outputs are not 100% accurate. Therefore, utilizing ML outputs 
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in completeness will result in infeasible problems. However, earlier research 

disregarded model reduction as a possible solution, i.e., partial usage of ML outputs.  

In this paper, model reduction is proposed which fixes certain subset of 

variables/solutions that are determined from ML outputs with high confidence. This 

directly relates to reduction of variables and constraints in the MILP problem. Hence, 

the resultant MILP is an R-SCUC model which treats the remaining flexible generators 

as variables whereas the fixed generator statuses are treated like constants/parameters.  

An advantage of warm-start is maintaining solution quality, i.e. the solution 

does not change with or without ML solution. However, the disadvantage is that time 

reduction is minimal in most cases. When compared against model reduction, R-SCUC 

results in significant time savings. Additionally, through well-defined post-procedures 

to utilize the ML outputs, the solution quality is maintained to a high degree in R-

SCUC. 

5.5. Test cases 

The proposed methods were validated with the following standard test systems 

summarized in Table 5.1. It can be noted that a modified IEEE 24-bus system was also 

introduced with 2 additional renewable units with a peak capacity of 200MW each. 

Three scenarios with varying renewable outputs are considered in the modified IEEE 

24-bus system. Simulation results are presented in the following sections.  
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Table 5.1.  Summary Of Test Systems 

System Gen cap (MW) #bus # gen # branch 

IEEE 24-Bus [63]  3,393 24 33 38 

Modified IEEE 24-Bus [76]  3,793 24 35 38 

IEEE 73-Bus [63]  10,215 73 99 117 

IEEE 118-Bus [93]  5,859 118 54 186 

South Carolina (SC) [123]  12,189 500 90 597 

Polish [93]  30,053 2,383 327 2,895 

 

5.6. ML Approach 

The overall supervised ML approaches are described at a fundamental level in 

Fig. 5.2. We focus on building a supervised ML model to predict the commitment status 

of each generator 𝑔 in each time interval 𝑡 (24-hours) for day-ahead operations. The 

commitment status of 1 implies the generator is ON whereas 0 represents the generator 

is OFF. Ideally a classification model can be utilized when the targets only belong to 

two classes, also known as binary classification. There are several classification models 

but only few models provide probabilities as an output. We also require a generative 

classifier that does not assume independence in pairs of input features.  In this work, 

the input features are the respective normalized nodal demands and therefore cannot be 
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considered independent in real-world data. The training and test samples are produced 

using data generation mentioned in section 5.3.  

 

Fig. 5.2. Supervised ML approach. 

The proposed method The ML step is utilized to reduce the number of variables 

in the SCUC model. The traditional approach is to utilize all the information such as 

constants, continuous and binary variables in an online SCUC model as shown in Fig. 

5.3. However, we can train an ML algorithm to identify variables that follow a pattern, 

especially binary variables by leveraging historical information. It is known that binary 

variables increase the complexity in an MILP [103]–[104],[115]–[120].  
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Fig. 5.3. SCUC Model Reduction. 

In SCUC, the binary variables are the generator commitment schedule. The 

constants include forecasted load profiles, generator cost and ramping information 

whereas the continuous variables are generator dispatch, line flows and bus angles. By 

studying the historical commitment schedules with respective load profiles, the ML 

algorithm can identify many generator states with certainty for any given load profile. 

The generator states can be classified as either (i) flexible, to be determined by online 

optimization step, or (ii) fixed, as identified by offline ML algorithm. Therefore, the 

fixed generators are now constants and the resultant R-SCUC online model only 

determines the states of flexible generators. 

It can be noted here that this approach of model reduction is agnostic to the 

MILP model. This implies that the proposed approach of model reduction is unaltered 
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and can be applied to deterministic, stochastic and/or decomposition or heuristic 

techniques based SCUC models 

5.7. Accuracy 

The proposed ML models are trained using 𝑀𝑡𝑟𝑎𝑖𝑛 and tested using 𝑀𝑡𝑒𝑠𝑡 

through the data generation mentioned in section 5.3. The ML model accuracy can be 

verified using the post-processed outputs. Once the model is trained, the output 

probabilities, 𝑃(𝑢𝑖,𝑔,𝑡
𝑀𝐿 ), are post-processed to obtain the predicted commitment 

schedule 𝑢𝑖,𝑔,𝑡
𝑀𝐿 : 1 if 𝑃(𝑢𝑖,𝑔,𝑡

𝑀𝐿 ) ≥ 𝑃𝑡ℎ, and 0 if 𝑃(𝑢𝑖,𝑔,𝑡
𝑀𝐿 ) < 𝑃𝑡ℎ. 𝑃𝑡ℎ is the probability 

threshold that varies between 0.5 ≤ 𝑃𝑡ℎ ≤ 0.9. The accuracy in terms of 𝑢𝑖,𝑔,𝑡
𝑀𝐿 , defined 

in (5.5), is calculated for both 𝑖 ∈ 𝑀𝑡𝑟𝑎𝑖𝑛 and 𝑖 ∈ 𝑀𝑡𝑒𝑠𝑡 using the true commitment 

𝑢𝑖,𝑔,𝑡,  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 −
1

𝑚
∑ (∑ ∑ |𝑢𝑖,𝑔,𝑡 − 𝑢𝑖,𝑔,𝑡

𝑀𝐿 |𝑡∈𝑇 )𝑔∈𝐺

𝑚

𝑖=1
,  (5.5) 

where, m represents the number of samples, G represents the set of generators and T 

represents the set of time periods.  

5.8. Preliminary UC Model and ML Method 

In this section, preliminary work was implemented using a simplified SCUC 

process described by (2.1)–(2.7),(2.10)–(2.15). The minimum-up and minimum down 

requirements of generators were assumed to be 1 hour and therefore the constraints 
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(2.8)–(2.9) were not considered. The data generation and verification steps also 

conform with the above model.  

5.8.1.  ML Model  

The logistic regression (LR) model was chosen as the classifier method in this 

paper. Since LR is a well-established classifier method, several python packages 

provide a default package for outputs with input data. The LR model is implemented 

through scikit-learn package [124]. Scikit-learn provides a package that fits the input 

and outputs based on the LR algorithm using the solver liblinear. The liblinear solver 

uses a coordinate descent algorithm and only supports binary classification. The 

package is capable of handling one target or output at a time and the regularization is 

applied by default. This package trains the LR model with the following cost function 

in (5.6),  

      𝐶𝑜𝑠𝑡 =
1

2
𝑤𝑇𝑤 − 𝐶 ∑ log (exp(−𝑦𝑖(𝑋𝑖

𝑇𝑤 + 𝑐)) + 1)
𝑚

𝑖=1
, (5.6) 

where, w represents the trainable weights, 𝑦𝑖 represents the target/output, 𝑋𝑖 represents 

the input vector of sample i, and C is the penalty.  

In this work, the input features are the respective normalized nodal demands. 

The output targets are the generator g commitment status which indicates the ON and 

OFF schedule in each time period t. A commitment status of 1 implies the generator g 

is ON whereas 0 represents the generator g is OFF. Therefore, the targets belong only 

to two different classes (binary classification). 
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The ML model accuracy can be verified using the post-processed outputs. Once 

the model is trained, the output probabilities, 𝑃(𝑢)𝑖,𝑔,𝑡
𝑀𝐿 , are post-processed to obtain the 

predicted commitment schedule 𝑢𝑖,𝑔,𝑡
𝑀𝐿 : 1 if 𝑃(𝑢)𝑖,𝑔,𝑡

𝑀𝐿 ≥ 𝑃𝑡ℎ, and 0 if 𝑃(𝑢)𝑖,𝑔,𝑡
𝑀𝐿 < 𝑃𝑡ℎ. 

𝑃𝑡ℎ is the probability threshold that varies between 0.2 ≤ 𝑃𝑡ℎ ≤ 0.8. The accuracy in 

terms of 𝑢𝑖,𝑔,𝑡
𝑀𝐿 , defined in (5.5), is calculated for both 𝑖 ∈ 𝑀𝑡𝑟𝑎𝑖𝑛 and 𝑖 ∈ 𝑀𝑡𝑒𝑠𝑡 using 

the optimal commitment 𝑢𝑖,𝑔,𝑡 obtained by solving SCUC.  

5.8.2. Benchmark Methods 

To obtain the boundary conditions, the benchmark methods are utilized to 

compare against the proposed methods. Therefore, two benchmark methods are utilized 

namely, B1 and B2. The SCUC model described in Section 5.8 is the benchmark model 

B1 that does not utilize any ML information and is purely optimization. Whereas B2 is 

an R-SCUC model only uses ML solution. This implies all the binary variables are 

fixed in SCUC, which is effectively converted into an economic dispatch problem. The 

following summarizes the benchmark methods:  

• B1: normal SCUC that does not utilize any ML outputs 𝑢𝑔,𝑡
𝑀𝐿, in which 𝑢𝑔,𝑡 is 

solved only through MILP.  

• B2: fix 𝑢𝑔,𝑡 =  𝑢𝑔,𝑡
𝑀𝐿 and solve the reduced-SCUC (linear model in B2). 
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5.8.3. Proposed Methods  

In this chapter, the LR model proposed in sub-section 5.8.1 is extended with 

two proposed post-processing procedures. Once the LR model provides the 

probabilities of the generator commitment status, the decision boundary is then utilized 

to determine values of ML identified commitment status. The proposed methods in this 

section identifies which among the ML solution can further be processed to provide 

additional insights to reduce the complexity of the SCUC. The goal to choose the right 

post-procedure involves the elimination of infeasible problems while also maintaining 

the solution quality. The following are the proposed two procedures namely, P1 and 

P2, to utilize the ML outputs to assist in establishing an R-SCUC for each power grid 

load profile of the testing samples:  

• P1: R-SCUC where fix 𝑢𝑔,𝑡 = 1 if 𝑢𝑔,𝑡
𝑀𝐿 = 1. The warm-start uses 𝑢𝑔,𝑡 = 0 if 

𝑢𝑔,𝑡
𝑀𝐿 = 0. 

• P3: R-SCUC where always ON/OFF generators are identified using 𝑢𝑔,𝑡
𝑀𝐿. For 

each testing sample (grid profile), if a generator 𝑔 is predicted to be always ON 

in 24-hour period then fix 𝑢𝑔,𝑡 = 1 for the entire 24-hour period for the 

corresponding generator. Similarly, if generator 𝑔 is always OFF in 24-hour 

period, then fix 𝑢𝑔,𝑡 = 0 for all periods for the corresponding generator. For all 

other generators, use warm-start 𝑢𝑔,𝑡 = 𝑢𝑔,𝑡
𝑀𝐿. 
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For each sample 𝑖 ∈ 𝑀𝑡𝑒𝑠𝑡 , the above procedures P1–P2 are implemented and 

the respective R-SCUC is solved to verify the quality of the LR solution. The quality 

of solution and time for computation for R-SCUC are compared against B1 and B2 

which provides the minimum and maximum time reduction possible for each test 

sample, respectively. The overall flow of the proposed LR assisted R-SCUC process is 

represented in Algorithm 5.1. Here, steps 1–5 represent data generation, steps 6–10 

represent the training phase of LR, step 11–12 represent the testing phase of LR and 

steps 13–16 represent verification of proposed LR assisted R-SCUC procedures.  

Algorithm 5.1 LR assisted SCUC process 

1: For 𝑖 ∈ 𝑀  

2:      Randomize nodal demand 

3:        Solve SCUC 

4:      Store 𝑑𝑖,𝑛,𝑡, 𝑢𝑖,𝑔,𝑡, results and computing time 

5: End 

6: Shuffle 𝑀 samples 

7: Split 𝑀 as 80% for 𝑀𝑡𝑟𝑎𝑖𝑛 and 20% for 𝑀𝑡𝑒𝑠𝑡  

8: Train LR using 𝑀𝑡𝑟𝑎𝑖𝑛 for different hyperparameters 

9: Calculate training accuracy.  

10: Tuning: identify hyperparameters with best accuracy  

11: Test using 𝑀𝑡𝑒𝑠𝑡 and report test accuracy  

12: Save ML predicted output probabilities for 𝑀𝑡𝑒𝑠𝑡 

13: For 𝑖 ∈ 𝑀𝑡𝑒𝑠𝑡 

14:        Perform B1–B2, P1–P2 and verify resultant SCUC for 𝑑𝑖,𝑛,𝑡 

15:        Record results and computing time 

16: End    
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5.8.4. Results and Analysis  

The SCUC mathematical model is implemented in AMPL. The data creation 

and verification steps are thus conducted using AMPL and solved using Gurobi solver 

with MIPGAP = 0.01. The ML step is implemented in Python 3.6. The computer with 

Intel® Xeon(R) W-2295 CPU @ 3.00GHz, 256 GB of RAM and NVIDIA Quadro 

RTX 8000, 48GB GPU was utilized. The proposed methods were validated with the 

following standard test systems summarized in Section 5.5. Simulation results are 

presented in the following sub-sections. In this Section, it can be noted that the dataset 

was created with an assumption of 1-hour minimum-up and minimum-down time for 

all generators. 

5.8.4.1. Decision Boundary Sensitivity Analysis  

The decision boundary, 𝑃𝑡ℎ , is an important parameter that is utilized to classify 

generator status as ON or OFF. The outputs of LR algorithms are the probability of a 

generator g in time period t being ON. This does not affect warm start application since 

they are only used as starting values for the MILP.  

However, in this paper, we focus on R-SCUC methods by directly using ML 

solution partially to reduce problem complexity. In the case of B2, benchmark method 

that uses complete ML solution, we notice 𝑃𝑡ℎ significantly affects results. A key 

observation is that lower value of 𝑃𝑡ℎ reduces the number of infeasible problems but 

affects solution quality (SQ) since more non-optimal generators are switched ON in 



   

 

 

127 

certain time periods. The trade-off to consider in B2 is more feasible problems vs 

solution quality. For example, in the IEEE 24-Bus system, from Fig. 5.4, it can be seen 

that it changes from 48 (16.6%) infeasible test samples for 0.5 ≤ 𝑃𝑡ℎ ≤ 0.7 to 85 

(29.4%) infeasible test samples at 𝑃𝑡ℎ = 0.8. For 𝑃𝑡ℎ = 0.9, this increases to 261 

(90.3%) infeasible test samples. The reason is that fewer generators are committed, and 

they are unable to meet the load. Ideally, 0.5 ≤ 𝑃𝑡ℎ ≤ 0.7 is the threshold based on the 

sensitivity analysis performed on B2. 

This provides an important conclusion that ML solutions cannot completely 

replace optimization even if the accuracy is high. However, B2 presents the maximum 

solve time (ST) savings achieved for feasible samples and this serves as a boundary 

condition to gauge the proposed methods, P1 and P2.  

 

Fig. 5.4. Test sample infeasibility in IEEE 24-Bus system for B2. 
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Fig. 5.5. B1-Normalized solution quality (SQ) and solve time (ST) averaged over test 

samples for IEEE 24-Bus system with respect to decision boundary.  

 

On further analysis, from Fig. 5.5, we can notice two trends for P1 and P2. 

Firstly, as 𝑃𝑡ℎ  increases, the solution quality continuously improves. SQ values closer 

to 0 is more accurate as it represents the change in objective cost with respect to B1. 

SQ greater than 0 implies that the model provides a higher cost than B1 and SQ less 

than 0 implies that the model provides lower cost than B1. This is because, (i) more 

variables are determined from optimization as opposed to ML solution and (ii) problem 

relaxations due to R-SCUC models are capable of achieving lower cost compared to 

SCUC model, B1. Secondly, time savings reduces as 𝑃𝑡ℎ increases. Therefore, a trade-

off between solution quality and time-savings is considered to obtain the best decision 

boundary. 
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5.8.4.2. ML Training  

Table 5.2 summarizes the 𝑀, 𝑀𝑡𝑟𝑎𝑖𝑛, 𝑀𝑡𝑒𝑠𝑡, accuracy, cumulative training time 

and decision boundary for each test system once the tuning and sensitivity analysis are 

completed. The LR algorithm provides high accuracy >93% for both the training and 

test samples for all test systems considered in this work.  

The training time is the cumulative training time for all targets (each generator 

g in each time period t) for a particular test system. The training time is an offline step 

and is only implemented once for each system prior to the online step. Therefore, 

training time will not be considered in R-SCUC which is online. Even so, training times 

are reasonable even for the large systems (Polish 2383-bus system) with ~85 min to 

train.  

Ideally, the offline training can be done with grouped seasonal profiles that are 

similar in characteristics, patterns and resultant commitment schedules. This can 

increase the robustness of the algorithm. For the purpose of highlighting the benefits 

of LR algorithm and post-processing techniques, a higher variation in load profile is 

considered in this work. Here, it can be noted that a high accuracy directly implies a 

higher decision boundary, 𝑃𝑡ℎ, which implies ON and OFF generators are very well 

distinguished.  
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Table 5.2.  Training Summary 

# Bus 

Number of Samples Accuracy (%) Training 

time 

(min) 

𝑃𝑡ℎ 
Total Train Test Train Test 

24 1,446 1,157 289 98.97 98.96 <1 0.7 

73 1,391 1,113 278 96.89 96.88 <8 0.7 

118 1500 1200 300 93.61 93.53 <5 0.3 

500 1499 1200 299 98.56 98.51 <17 0.6 

2383 1200 960 240 95.94 95.86 <85 0.5 

 

5.8.4.3. Verification of Proposed Method 

ML Training, verification Once each system was trained, a verification process 

was conducted for P1 and P2. This was benchmarked against the B1 method that does 

not use any ML solution and against the B2 method that only uses ML solution to 

determine all generator commitment status. Therefore, the SQ from B1 method is 

considered as 100% since it is purely an MILP optimization. The solutions cost and 

solution time of the R-SCUC models P1, P2 and B2 are represented as B1-normalized 

values.  

Fig. 5.6, and Fig. 5.7, presents the B1-normalized objective value and 

computing time in percent when averaged over all test samples for each test system, 
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respectively. From Fig. 5.6, P2 provides comparable SQ to the B1 method. However, 

P1 leads to marginally increased costs since the ML solution may result in scheduling 

sub-optimal generators as ON. A key observation here is that not all samples of B2 are 

feasible even though the accuracy is >93%. This is because B2 fixes the status for all 

generators and only an optimal economic dispatch is then implemented. For the feasible 

samples, B2 results only in marginal loss of SQ in IEEE 24-bus system (0.02%), IEEE 

73-bus system (0.66%), IEEE 118-bus system (2.33%) and Polish system (2.02%) 

while it leads to a substantial increase of total cost on the IEEE 500-bus system. 

However, the SQ can be improved by P1 and P2 without infeasible problems. 

Therefore, the proposed methods, P1 and P2, not only avoid infeasible problems but 

also maintain SQ. Among the proposed methods, P2 offers the highest SQ similar to 

B1 for all test systems.  

From Fig. 5.7, though B2 results in lower solution quality, it provides the most 

computational time savings ~95% in the Polish system since this eliminates all the 

binary variables in the problem. Therefore, the solution of B2 serves as the maximum 

time-saving benchmark. P1 and P2 are R-SCUC models that reduce the number of 

variables and constraints and therefore result in considerable time-savings when 

compared to B1. Among the proposed methods, P1 offers 50.9% time-savings and P2 

offers 38.8% time-savings on average across different test systems. P1, identifies more 

generator status (variables) to be ON, provides higher time-savings mainly because this 
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procedure reduces more variables. In comparison, P2 only identifies generators that are 

Always-ON or Always-OFF. 

 

Fig. 5.6. Normalized cost in percentage averaged over test samples. 

 

 

Fig. 5.7. Normalized computing time in percentage averaged over test samples. 
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5.8.4.4. Problem Size Reduction 

B2, P1 and P2 use ML solutions to fix the status of generators, which results in 

R-SCUC models. In particular, B2 eliminates all binary variables in the problem 

whereas P1 and P2 results in decreased variables and constraints as seen in Table 5.3. 

B1 represents the pure optimization process and therefore has the full list of variables 

and constraints. A warm-start is not a proposed methodology in the paper. However, if 

a warm-start is utilized it will have the same problem size as the B1 method since the 

ML solution is only used as a warm-start solution. By utilizing the ML solution, B2, 

P1 and P2 effectively reduces linear variables, binary variables, constraints and non-

zeroes in the SCUC problem. As a result, it leads to smaller problem which results in 

time-savings.  

Table 5.3. Average Problem Size for Polish System 

Procedure Linear Var Binary Var Constraints Non-zeroes 

B1 142,296 15,696 197,112 3,176,376 

P1 128,856 3,700 153,296 2,924,834 

P2 142,296 10,464 184,104 3,135,024 

B2 125,330 0 136,168 2,027,850 
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5.8.4.5. Inferences 

It was evident that ML cannot directly replace the optimization procedure from 

B2 since this lead to infeasible problems, which is detrimental. Not only that, the 

solution quality also suffers in feasible problems of B2. The only advantage is it points 

that almost 95% computational time can be reduced for large systems and is hence used 

as a benchmark boundary. The proposed ML assisted SCUC model reduction method 

can relieve the computational burden of the MILP problem while maintaining solution 

quality. The results also point that the ML model’s decision boundary selection plays 

a vital part in the model accuracy.  

Further, once the models are trained, the proposed post-processing techniques, 

P1 and P2, effectively utilize the ML predicted outputs without causing any SCUC 

infeasibility. The proposed approaches only use part of the ML solutions with high 

confidence to reduce the variables and constraints in SCUC. Not only that, but the 

solution quality was also not compromised especially in P2. P1–P2 results in problem 

size reduction, which results in significant time-savings across multiple test systems. 

P1 and P2 result in time savings of 50.9% and 38.8%, respectively, on average across 

all the test systems while also resulting in high-quality solutions. 

5.9. Advanced Post-Processing Methods 

This section extends on the preliminary idea in section 5.8 but has several 

improvements and innovations to supersede the prior work. Firstly, this section 
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addresses the a compete SCUC model by utilizing the minimum-up and minimum 

down requirements of generators constraints in (2.8)–(2.9) which were earlier 

eliminated from the SCUC model. Here, the SCUC model is defined by (2.1)–(2.15). 

Therefore, the data for this section is also regenerated with updated SCUC model 

considering minimum up and minimum down time of generators in the test systems. 

Secondly, several ML classifications were studied, namely, KNN, random forest (RF), 

fully connected neural networks (NN), logistic regression (LR), and a novel multi-

target logistic regression (MTLR). Among these, the LR, MTLR and NN algorithm 

provided the most flexibility to post-process the ML outputs while also providing very 

high-quality solutions. Lastly, the proposed method in this section introduces a novel 

feasibility layer (FL) to correct machine learning predictions to be feasible for (2.8)–

(2.9). The following contributions were explored:  

• An NN model and an innovative multi-target logistic regression (MTLR) model 

are utilized to leverage historic demand profiles to predict generation 

commitment schedule as an offline step.  

• Effective post-processing methods, utilizing the ML output to reduce the 

variables in SCUC model achieving model-reduction, are addressed while 

maintaining solution quality. 

• A feasibility layer (FL) is proposed to ensure feasibility of ML solution in 

online optimization step.   
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• A bus-correlated randomized profile generation (BC-RPG) method is used to 

obtain data to train ML models. 

5.9.1. Classification Models from Scikit-learn  

Performance of several classification models, namely KNN, RF, NN and LR 

are considered initially. All the models used for comparison are obtained from Scikit 

package, [124]. The neighbors-based classification is a type of instance-based learning 

or non-generalizing learning. This implies a general internal model is not constructed 

but rather training data are stored as instances. Classification is computed from a simple 

majority vote of the nearest neighbors of each point. For KNN classification, the 

optimal choice of the value K is highly data-dependent: in general, a larger K 

suppresses the effects of noise, but makes the classification boundaries less distinct. 

KNN works by identifying the most similar examples in the training dataset and 

conducting a simple majority vote [125]. 

Another supervised learning method used for classification is the class of non-

parametric decision trees where a target variable is predicted by the model by learning 

simple decision rules inferred from the data features. Here, a tree can be seen as a 

piecewise constant approximation. The RF model is a classification where an ensemble 

of many individual decision trees is used for prediction. Each individual tree in the 

random forest predicts a class output and the class with the most votes become the RF 

prediction [126].  
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LR is a well-established classifier method which works in a one vs rest 

classification meaning it identifies one output based on the set of training inputs [127]. 

LR algorithm using the solver liblinear which uses a coordinate descent algorithm and 

only supports binary classification. The package is capable of handling one target or 

output at a time and the regularization is applied by default [127]. The architecture of 

LR is represented in Fig. 5.8. 

 

Fig. 5.8. LR architecture. 

Multi-layer perceptron (MLP) is a supervised learning algorithm that learns a 

mapping between inputs and outputs by training on a dataset. MLP is also known as 

NN where a non-linear function approximator for either classification or regression is 

used for learning. Mainly, NN differs from LR, in that between the input and the output 

layer, there can be one or more non-linear layers hidden layers. The outputs from the 

hidden layer are processed by a sigmoid layer to provide probability estimates and 

followed by a classification to represent the class. It uses a cross-entropy loss function 

and trains via backpropagation. For classification, it minimizes the cross-entropy loss 

function, providing a vector of probability estimates [128]. The architecture of NN is 

shown in Fig. 5.9. 
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Fig. 5.9. NN architecture. 

5.9.2. Multi-Target Logistic Regression 

In this section, the training model/algorithm considered is an MTLR model as 

denoted in Fig. 5.10. This model is similar to LR as it is a regression model which 

predicts the value of probability of an output being 1 [129]–[130]. The difference is 

that MTLR uses a single set of weights, 𝑤𝑗, as opposed to multiple models with 

different weights, 𝑤𝑗,𝑚,  in LR.  

 

Fig. 5.10. MTLR based SCUC model reduction algorithm. 
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The hypothesis of LR model, (5.7), is a linear summation of normalized nodal 

demand and the parameters/weights, 𝑤𝑗, 

      ℎ𝑤(𝑥) = 𝑤0 + ∑ 𝑤𝑗𝑥𝑗 .
𝑗∈𝑁∗𝑇

 (5.7) 

The LR model uses a sigmoid activation layer, (5.8), which restricts the output from 

0–1 which represents the probability of the output being 1, 𝑃(𝑦 = 1),  

 
     𝜎(𝑡) =

1

1 − 𝑒−𝑡
. 

(5.8) 

Finally, the output, 𝑦̂, is obtained after the hypothesis function followed by the sigmoid 

activation as seen in (5.9),  

 𝑦̂ = 𝜎(ℎ𝑤(𝑥)) = 𝑃(𝑦 = 1). (5.9) 

To train the LR model, we need to obtain the best parameters, 𝑤𝑗, that fit the 

input and output features. This is implemented using the LR cost/loss function, (5.10), 

 𝐽(ℎ𝑤(𝑥)) = −
1

𝑚
[∑ (𝑦(𝑖) 𝑙𝑜𝑔 ℎ𝑤(𝑥(𝑖)) + (1 −

𝑚

𝑖=1

𝑦(𝑖)) log (1 − ℎ𝑤(𝑥(𝑖))) )].  

(5.10) 

To obtain the weights, we minimize the LR cost/loss function, (5.11),  

 𝑚𝑖𝑛𝑤 𝐽(ℎ𝑤(𝑥)), (5.11) 

by using a gradient descent algorithm, (5.12), for several iterations until the cost/loss 

values saturates for all samples in 𝑀𝑡𝑟𝑎𝑖𝑛,  

 Repeat {𝜔𝑖 ≔ 𝜔𝑖 − 𝛿 ∑ (ℎ𝑤(𝑥(𝑖)) − 𝑦(𝑖) )
𝑚

𝑖=1
𝑥𝑗

(𝑖)
}, (5.12) 
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where, 𝛿 represents the learning rate of the gradient descent algorithm. The number of 

iterations and learning rate represents the hyper-parameters of the LR model. 

The model accuracy can be verified using the post-processed outputs. Once the 

model is trained, the output probabilities are post-processed as 𝑃 ≥ 0.5 as 1 and 𝑃 <

0.5 as 0 to obtain the predicted commitment schedule, 𝑢𝑖,𝑔,𝑡
𝑀𝐿 . The accuracy is calculated 

for both 𝑚 ∈ 𝑀𝑡𝑟𝑎𝑖𝑛 and 𝑚 ∈ 𝑀𝑡𝑒𝑠𝑡 using (5.5). 

5.9.3. Feasibility Layer 

Once the ML model provides the classification results, a FL is added to avoid 

any erroneous commitment schedules in ML outputs, 𝑈𝑚,𝑔,𝑡
𝑀𝐿 , by making minor but 

necessary corrections across time period 𝑡 ∈ 𝑇 as defined in (5.13),  

 𝑀𝑖𝑛 ∑ (𝑢𝑔,𝑡
𝑈𝑝 + 𝑢𝑔,𝑡

𝐷𝑛)𝑡 .  (5.13) 

As shown in (5.14), if 𝑈𝑚,𝑔,𝑡
𝑀𝐿 = 1, then it can be turned off with 𝑢𝑔,𝑡

𝐷𝑛 = 1. Similarly, if 𝑈𝑚,𝑔,𝑡
𝑀𝐿 =

0, then it can be turned on with 𝑢𝑔,𝑡
𝑈𝑝

= 1,  

 𝑢𝑚,𝑔,𝑡
𝑀𝐹 = 𝑈𝑚,𝑔,𝑡

𝑀𝐿 + 𝑢𝑔,𝑡
𝑈𝑝 − 𝑢𝑔,𝑡

𝐷𝑛 ∀𝑡. (5.14) 

The FL ensures that minimum up/down time limit constraints (2.8)–(2.9) are not 

violated by reforming them as (5.15)–(5.16), 

 ∑ 𝑣𝑔,𝑝
𝑀𝐹𝑡+𝐷𝑇𝑔

𝑝=𝑡+1 ≤ 1 − 𝑢𝑚,𝑔,𝑡
𝑀𝐹  ∀𝑡 ≤ 𝑛𝑇 − 𝐷𝑇𝑔,  (5.15) 

and 
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 ∑ 𝑣𝑔,𝑝
𝑀𝐹𝑡

𝑝=𝑡−𝑈𝑇𝑔+1 ≤ 𝑢𝑚,𝑔,𝑡
𝑀𝐹  ∀𝑡 ≥ 𝑈𝑇𝑔.  (5.16) 

(5.17) defines the respective start-up variable, 𝑣𝑔,𝑡,𝑚
𝑀𝐹 , 

 𝑣𝑚,𝑔,𝑡
𝑀𝐹 ≥ 𝑢𝑚,𝑔,𝑡

𝑀𝐹 − 𝑢𝑚,𝑔,𝑡−1
𝑀𝐹  ∀𝑡. (5.17) 

Finally, (5.18) ensures that the flexible generator can either be turned on or turned off 

whereas (5.19) describes the variables are bound by binary integrality,  

 𝑢𝑔,𝑡
𝑈𝑝 + 𝑢𝑔,𝑡

𝐷𝑛 ≤ 1 ∀𝑡, (5.18) 

and 

 𝑢𝑔,𝑡
𝑈𝑝, 𝑢𝑔,𝑡

𝐷𝑛, 𝑣𝑚,𝑔,𝑡
𝑀𝐹 , 𝑢𝑚,𝑔,𝑡

𝑀𝐹 ∈ {0,1}, ∀𝑡. (5.19) 

The FL is represented by (5.13)–(5.19) and is solved in the online phase. 

Therefore, it is performed for each generator g independently per sample m ∈ 𝑀𝑡𝑒𝑠𝑡 

during the verification process. Here, it can be noted that Always ON/OFF as 

determined by ML outputs, 𝑢𝑚,𝑔,𝑡
𝑀𝐿 , in each sample m can be excluded as they are already 

feasible for minimum up/down constraints. The solve time for FL for each generator g 

is aggregated and added to the respective R-SCUC solve time for each sample m.  

5.9.4. Post-Process Technique 

The LR, MTLR and NN models presented in Section 5.9.1 and Section 5.9.2 

are extended with a post-processing technique which includes the FL described in 

Section 5.9.3 as seen in Fig. 5.11. Since the ML outputs of the above models are 

probabilities of generator being ON, a decision boundary of 𝑃𝑡ℎ = 0.5 is used to 
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classify ON and OFF status of generators. This implies, the generator status 𝑢𝑚,𝑔,𝑡
𝑀𝐿 = 1 if 

𝑃(𝑢𝑚,𝑔,𝑡
𝑀𝐿 ) ≥ 𝑃𝑡ℎ or 𝑢𝑚,𝑔,𝑡

𝑀𝐿 = 0 if𝑃(𝑢𝑚,𝑔,𝑡
𝑀𝐿 ) < 𝑃𝑡ℎ. Since this would lead to inaccuracies along the 

decision boundary which in-turn lead to infeasible solutions, the outputs are further 

checked for feasibility using the FL, discussed in Section 5.9.3. The following steps 

are used to complete the post-process technique for each training sample m: 

• Step 1: Identify always ON/OFF generators using 𝑢𝑚,𝑔,𝑡
𝑀𝐿 . If a generator 𝑔 is 

always ON (𝑃(𝑢𝑚,𝑔,𝑡
𝑀𝐿 ) ≥ 0.95) in each 𝑡 ∈ 𝑇 then 𝑓𝑖𝑥 𝑢𝑔,𝑡

𝑚 = 1 for all periods 

for the corresponding generator. Similarly, if the generator 𝑔 is always OFF 

(𝑃(𝑢𝑚,𝑔,𝑡
𝑀𝐿 ) ≤ 0.05) in 𝑡 ∈ 𝑇 then 𝑓𝑖𝑥 𝑢𝑔,𝑡

𝑚 = 0 for all periods for the 

corresponding generator. 

• Step 2: for remaining generators after Step 1, run FL. If 𝑃(𝑢𝑚,𝑔,𝑡
𝑀𝐿 ) ≥ 0.90 or 

𝑃(𝑢𝑚,𝑔,𝑡
𝑀𝐿 ) ≤ 0.10 and 𝑢𝑚,𝑔,𝑡

𝑀𝐿  = 𝑢𝑚,𝑔,𝑡
𝑀𝐹  then generator g in time-period t has a 

fixed state, 𝑓𝑖𝑥 𝑢𝑔,𝑡
𝑚 = 𝑢𝑚,𝑔,𝑡

𝑀𝐹 . 

• Step 3: If generator g in time-period t is identified as a flexible generator, i.e. 

0.1 < (𝑢𝑚,𝑔,𝑡
𝑀𝐿 ) < 0.9 or if  𝑢𝑚,𝑔,𝑡

𝑀𝐿 ≠ 𝑢𝑚,𝑔,𝑡
𝑀𝐹  then warm-start 𝑢𝑔,𝑡

𝑚  with 𝑢𝑚,𝑔,𝑡
𝑀𝐹 . 

For each sample 𝑚 ∈ 𝑀𝑡𝑒𝑠𝑡, the above steps are implemented and the respective 

R-SCUC is solved to verify the quality of the ML solution. The overall flow of the 

process is represented in Algorithm 5.2. 
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Fig. 5.11. Post-process technique with FL. 

Algorithm 5.2 ML assisted R-SCUC-FL process 

17: Repeat 

18:   randomize nodal demand 

19:        Solve SCUC 

20:   Store 𝑑𝑛,𝑡
𝑚 , 𝑢𝑔,𝑡

𝑚 , objective and time 

21: until 𝑚 ∈ 𝑀  

22: Shuffle 𝑀 samples 

23: Split 𝑀 as 80% for 𝑀𝑡𝑟𝑎𝑖𝑛 and 20% for 𝑀𝑡𝑒𝑠𝑡  

24: Train ML using 𝑀𝑡𝑟𝑎𝑖𝑛 for different hyper-parameters 

25: Calculate train and test accuracy 

26: Tuning: identify hyper-parameters with best accuracy  

27: Save ML predicted output probabilities 

28: Repeat 

29:         Perform step 1–step 3 and verify R-SCUC using 𝑢𝑔,𝑡
𝑚  

30:         record objective and time  

31: until 𝑚 ∈ 𝑀𝑡𝑒𝑠𝑡     

 

5.9.5. Results and Analysis 

The mathematical model is formulated in AMPL. The data creation and 

verification steps are implemented using AMPL and solved using Gurobi solver. For 

ML step is implemented in Python 3.6. A computer with Intel® Xeon(R) W-2295 CPU 
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@ 3.00GHz, 256 GB of RAM and NVIDIA Quadro RTX 8000, 48GB GPU was 

utilized. In this Section, the dataset was re-created with realistic minimum-up and 

minimum-down time for each type of generator have been considered.  

5.9.5.1. Comparison for Scikit-Learn Packages 

There are several classification techniques currently available. By utilizing 

scikit-learn package, we were able to compare some common classification techniques, 

namely, KNN, RF, LR, and a fully connected three-layer neural network NN on the 

IEEE 24-Bus system data. The models were trained using 𝑀𝑡𝑟𝑎𝑖𝑛 and tested on 𝑀𝑡𝑒𝑠𝑡. 

The accuracy is calculated using (5.5).  

Table 5.4.  Classification Model Comparison 

Classification model Training accuracy Testing accuracy Infeasible 

samples 

LR 97.95% 97.55% 43.14% 

NN 97.48% 97.46% 44.48% 

KNN 97.48% 97.42% 41.14% 

RF 97.31% 97.28% 47.16% 

 

From Table 5.4, it can be noticed that all the classification methods fare well 

for commitment outputs. LR provides the highest accuracy followed by NN, KNN, and 

RF, respectively. To verify which model results in identifying more accurate 
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sequences, we implement SCED. From Algorithm 5.2 in section 5.9.4, SCED can be 

implemented by replacing step1–step3 as 𝑓𝑖𝑥 𝑢𝑔,𝑡
𝑚 = 𝑢𝑚,𝑔,𝑡

𝑀𝐿  ∀ 𝑚 ∈  𝑀𝑡𝑒𝑠𝑡, 𝑔 ∈ 𝐺, 𝑡 ∈

𝑇. By performing SCED using ML solutions, we understand that ML models cannot 

accurately identify the sequences and may either result in sub-optimal solutions or 

infeasible solutions. Therefore, ML cannot completely replace the SCUC. However, 

we realized that the accuracy alone is not the best metric since KNN has lower accuracy 

than LR and NN but results in fewest infeasible samples in comparison. RF has the 

lowest accuracy, and this is also seen in the number of infeasible cases.  

Table 5.5. Confusion Matrix Comparison 

Classification Model True + True – False + False – 

LR 50.47% 47.01% 1.25% 1.20% 

NN 50.29% 47.16% 1.17% 1.38% 

KNN 50.77% 46.65% 1.67% 0.91% 

RF 50.23% 47.04% 1.28% 1.44% 

 

On studying the results further, Table 5.5 summarizes the confusion matrix 

respective to the result in Table 5.4. A confusion matrix provides an idea on the number 

of true predictions and false predictions in 𝑀𝑡𝑒𝑠𝑡. For any sample 𝑚 ∈  𝑀𝑡𝑒𝑠𝑡, if the 

predictions are accurate and entire sequence is identified implies the optimal solution 

is predicted. But if the number of false negatives increases, this implies that generator 
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g in period t is identified as OFF instead of ON. This directly affects the number of 

feasible samples as the flexibility in the system in the system is lost and constraints are 

violated, especially (2.6)–(2.10). As the number of false positives increases, this 

implies that the respective generator g in period t was identified as ON but, it should 

be OFF. This affects the solution quality as sub-optimal generators or generators with 

insufficient capacity may be turned ON.  

However, it can also be noted that ML does provide a high number of accurate 

predictions in each sample. Therefore, identifying a post-procedure may be beneficial 

to selectively utilize ML solutions that are known in high confidence. To leverage this, 

probability is a great metric. However, KNN and random forest models are inherently 

classification only model. This implies that the outcomes belong in one of several 

classes as generator schedules are grouped together in unique schedule buckets. Hence, 

these models cannot provide a probability for individual generators being ON/OFF. 

Models such as LR are inherently probabilistic in nature as the outputs are probability 

before the decision boundary is utilized to classify the outputs. Similarly, NN can also 

prove probabilistic outputs when a sigmoid layer is utilized. This implies that LR and 

NN are more flexible in nature to partially utilize the ML solution for variable 

reduction. This means that the probability can be construed as a true trained outcome 

of the ML model. Among the two models, LR results in lower false negative predictions 

which leads to higher accuracy and fewer infeasible cases and hence chosen as the 

classification model for further analysis. 
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5.9.5.2. Comparison between LR and MTLR 

Even though ML training is an offline step, while training larger models LR 

required a high amount of training time. LR is traditionally developed as one vs rest 

algorithm which implies that the existing packages for LR only performs for each target 

(generator g in time period t) separately [129]–[130]. This is computationally expensive 

since this requires training multiple sets of weights for each generator g in each time 

period t in the test systems. Hence, we proposed the MTLR described in section 5.9.2. 

In comparison, the proposed MTLR provides outputs for all targets (generators) using 

single set of weights.  

For validation of the proposed MTLR, we compared accuracy using LR from 

Scikit-learn package [127]. From Table 5.6, as the model size increases, the training 

time significantly increases as noted in the polish system which requires 6,178 seconds 

(~1.7 hours) to train. But in MTLR we notice that a minor trade-off in accuracy results 

in 2.4x speedup over LR on average across all test systems. This results in a significant 

computational speed-up during offline training in larger test systems. Not only that, LR 

method from scikit-learn only works if the training set contains both ON/OFF samples 

for each generator which implies that LR can only be applied for generators showing a 

flexible trend. In practicality, there can be few generators such as base plants and hydro 

plants that are ON irrespective of the load profile over the horizon and/or in all data 

samples. An assumption is required for such generators per the generic trend. In 

comparison, the proposed MTLR method can handle this certainty in schedules for 
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fixed generators since the true label is a vector of schedules of all generators in each 

sample and the entire schedule can be unique in nature. Hence, for these reasons, 

MTLR is used in subsequent results. 

Table 5.6.  Validation Of MTLR 

# Bus 

LR Test 

Accuracy 

LR Train Time 

(s) 

MTLR Test 

Accuracy 

MTLR Train 

Time (s) 

24 97.55% 16.19 97.44% 8.18 

73 95.39% 374.2 95.96% 176.29 

118 95.98% 344.85 95.52% 143.21 

500 98.87% 743 98.80% 339.63 

2383 98.18% 6,178.33 98.17% 2,445.28 

 

5.9.5.3. MTLR Hyper-parameter Tuning 

There are several classification techniques currently available. By utilizing 

scikit-learn package, we were Each test system is trained using the MTLR model 

separately by utilizing the respective generated data, 𝑀𝑡𝑟𝑎𝑖𝑛. During training, the 

samples are considered as a single full batch for 𝑚 ∈  𝑀𝑡𝑟𝑎𝑖𝑛. The best trained hyper-

parameters with highest accuracy will be utilized for further tests. For each test system, 

the hyper-parameter learning rate (𝛿) is varied from 0.001–0.05. For each 𝛿, systems 
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were trained until the cost saturates and then the accuracy was then calculated using 

(5.5). 

During training, the cost vs iterations or epoch is registered to plot learning rate 

(𝛿) graph. The 𝛿 graph represents the loss/cost with respect to the iteration which 

provides information about the training when different hyper-parameter is utilized. 

Here, Fig. 5.12, represents the learning curve for IEEE 24-Bus system when trained for 

1000 iterations to show the saturation of the cost. For 𝛿 ≥ 0.03, the training cost never 

saturates which implies that the step is too large. For 𝛿 ≤ 0.001, it is slower to converge 

in training which implies the step is too small. Between 0.003 ≤ 𝛿 ≤ 0.01, the 𝛿 =

0.01 is chosen for the IEEE 24-Bus system which provides the highest training 

accuracy and a strictly decreasing curve for learning rate. In comparison, the scikit-

learn models are trained using standard parameters provided by the package which 

includes an adaptive learning rate and early stopping functionality.  

 

Fig. 5.12. Learning rate (𝛿) curves for IEEE 24-Bus system (0.001 ≤ 𝛿 ≤ 0.05). 
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5.9.5.4. Training Summary (Offline) 

Each system is trained using both MTLR and NN model using the respective 

system data, 𝑀𝑡𝑟𝑎𝑖𝑛, as described in section 5.3. For all test systems, 1500 samples 

were created, shuffled and split 80% for training and 20% for testing. The training is 

an offline step performed once for each system.  

During training, the samples are considered as a single full batch. For MTLR, 

the hyper-parameter learning rate (𝛿) is identified and trained as per section 5.9.5.3. 

The training and testing accuracy was then calculated using (5.5). Table 5.7 

summarizes 𝛿, accuracy and training time for each test system. The MTLR and NN 

model provides high training and testing accuracy >95% for all the test systems 

considered in this work. Once the model is trained then the predictions, 𝑢𝑚,𝑔,𝑡
𝑀𝐿 and 

𝑃(𝑢𝑚,𝑔,𝑡
𝑀𝐿 ) for each test samples 𝑚 ∈  𝑀𝑡𝑒𝑠𝑡 are obtained and stored for all test systems. 

Table 5.7. MTLR Model Training Summary 

# Bus 

MTLR Accuracy NN Accuracy 

Train Test Train Test 

24 97.50% 97.44% 97.48% 97.46% 

73 95.97% 95.96% 95.37% 95.30% 

118 97.57% 95.52% 97.83% 97.62% 

500 98.81% 98.80% 99.06% 99.04% 

2383 98.34% 98.17% 98.11% 97.98% 
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5.9.5.5. Verification Results (Online) & Feasibility Layer Benefits 

In order to successfully assist SCUC, we developed the FL and the post-

processing technique mentioned in section 5.9.3 and section 5.9.4, respectively. The 

MTLR and NN based test predictions/outputs, 𝑢𝑚,𝑔,𝑡
𝑀𝐿  and 𝑃(𝑢𝑚,𝑔,𝑡

𝑀𝐿 ) is verified for 

feasibility with FL to obtain 𝑢𝑚,𝑔,𝑡
𝑀𝐹  and then post-processed. To address model-

reduction, benefits verification is performed for all test samples. The verification is an 

optimization step based on the ML outputs and therefore is an online step. Since the FL 

is also an optimization step, the solve time is inclusive of both post-processing and the 

MILP solve time. The R-SCUC-FL is implemented as per algorithm 5.2 in section 

5.9.4. In order to compare the benefits of FL, the R-SCUC (i.e., without FL), is also 

performed. R-SCUC is implemented by replacing step 2 and step 3 in Algorithm 5.2 

by: 

• Step II: for remaining generators after Step 1, 𝑓𝑖𝑥 𝑢𝑔,𝑡
𝑚 = 1 if 𝑃(𝑢𝑚,𝑔,𝑡

𝑀𝐿 ) ≥

90%, 𝑓𝑖𝑥 𝑢𝑔,𝑡
𝑚 = 0 if 𝑃(𝑢𝑚,𝑔,𝑡

𝑀𝐿 ) ≤ 10% and warm-start 𝑢𝑔,𝑡
𝑚 = 𝑢𝑚,𝑔,𝑡

𝑀𝐿  if 

10% < 𝑃(𝑢𝑚,𝑔,𝑡
𝑀𝐿 ) < 90%.   

Table 5.8 represents the infeasible problems corrected with R-SCUC-FL by 

using MTLR and NN based ML outputs respectively. The infeasible problems arise in 

R-SCUC. Based on our study, we noted that R-SCUC resulted in infeasible problems 

in many samples since ML mainly cannot distinguish minimum up/down time physical 

constraint requirement for generators (2.8)–(2.9). It only requires incorrectly 
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identifying one generator g in time period t to result in an infeasible solution for R-

SCUC. For example, in IEEE 24-bus system, there are 33 generators and 24 time 

periods, which implies a total of 792 predictions per sample m to identify commitment 

schedule. However, we notice that the FL eliminates all infeasible samples in all test 

systems.  Here, NN R-SCUC is more susceptible to infeasible samples in R-SCUC in 

comparison to MTLR R-SCUC. But, irrespective of the ML model, the FL ensures that 

the ML outputs adhere to MILP requirements particularly the generator minimum 

on/off time limit constraints. 

Table 5.8. FL Infeasible Problems Elimination 

System 

IEEE 24-

Bus 

IEEE 73-

Bus 

IEEE 118-

Bus 

SC 500-

Bus 

Polish 

2383-Bus 

NN 28 18 4 32 6 

MTLR 4 6 0 8 4 

 

Fig. 5.13 represents the solution quality whereas Fig. 5.14 represents the solve 

time averaged over all test samples for each test system utilizing the MTLR and NN 

based R-SCUC with and without FL. The objective cost and solve time for reduced 

models are represented as base-normalized (BN) values averaged over all test samples. 

The base model is normal SCUC that does not use any ML outputs. From Fig. 5.13, it 

can also be noted that the solution quality is maintained to a high degree for R-SCUC-
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FL without infeasibilities. In the case of IEEE 24-bus system, both MTLR R-SCUC 

and MTLR R-SCUC-FL result in better cost compared to SCUC. Similarly, the IEEE 

73-bus system, NN R-SCUC and NN R-SCUC-FL result in lower cost. This is because 

model reduction on top of time-saving can also tighten the MIPGAP to a high degree 

resulting in a better MIPGAP solution in some test systems when compared to SCUC. 

However, on average across all test systems, the solution quality is maintained to high 

degree of <0.1 % deviation for MTLR R-SCUC-FL and NN R-SCUC-FL.   

 

Fig. 5.13. R-SCUC and R-SCUC-FL solution quality. 

From Fig. 5.14, the BN solve time shows that R-SCUC-FL requires a minor 

additional time for ML prediction post-processing as two MILP models are solved 

when compared with R-SCUC to ensure solution quality and eliminating infeasibility. 
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MTLR R-SCUC-FL results in a speed-up factor of 1.7x, 3.3x, 2.1x, 2.3x and 8.5x, 

whereas NN R-SCUC-FL results in a speed-up factor of 1.6x, 3.7x, 1.9x, 2.8x and 6.9x 

for the IEEE 24-bus, IEEE 73-bus, IEEE 118-bus, SG 500-bus and Polish systems, 

respectively on average over all testing samples, 𝑚 ∈  𝑀𝑡𝑒𝑠𝑡 , when compared with 

SCUC. When averaged across all test systems, MTLR R-SCUC-FL results in speed-up 

factor of 3.6x whereas NN R-SCUC-FL results in a speed-up factor of 3.4x while also 

ensuring feasibility of all test samples. 

 

Fig. 5.14. R-SCUC and R-SCUC-FL solve time comparison. 
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5.9.5.6. Out of Sample Testing 

To understand the robustness of the proposed FL, an out-of-sample testing was 

further performed. The out-of-distribution-sample set consists of 100 samples that were 

not included in the training or testing samples of the verification process. Here, care 

was taken to introduce higher variability with 𝛼𝑚 =  ±25% and 𝛽𝑛,𝑡
𝑚 =  ±10% in (5.4) 

in order to avoid mimicking the original dataset and increase number of infeasible 

samples. 

Table 5.9. Infeasible Problems in Out-of-Distribution-Sample Data 

Test System 

MTLR R-

SCUC 

MTLR R-

SCUC-FL  

NN R-SCUC 

NN R-SCUC-

FL 

IEEE 24-Bus 40 14 (65% ↓) 59 28 (53% ↓) 

IEEE 73-Bus 95 54 (41% ↓) 100 74 (26% ↓) 

IEEE 118-Bus 63 27 (57% ↓) 78 18 (77% ↓) 

SC 500-Bus 82 36 (56% ↓) 100 67 (33% ↓) 

Polish 2383-Bus 37 9 ( 75% ↓) 45 16 ( 64% ↓) 

 

These samples were never utilized in the offline training phase or online 

verification phase. Therefore, the trained model might not fare as well in the out-of-

sample dataset (with much larger variations) when compared to the original dataset. 

Despite this, from Table 5.9, we notice a significant reduction in infeasible problems 
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when the FL was introduced in R-SCUC in all test systems. This resulted in reductions 

of infeasible samples by 58.8% and 50.6% when averaged across all test systems for 

MTLR and NN models, respectively. 

5.9.5.7. Case Study: Multi-Scenario Renewable Source 

As stated in the prior section, the proposed MTLR methods are agnostic to the 

MILP model. Hence, it can be utilized for both stochastic-SCUC (SSCUC) and 

deterministic SCUC cases. In a deterministic scenario, renewable profile can be 

captured through net-load profile. However, renewable energy is unpredictable in 

nature, the scenarios of wind and solar outputs are often considered. But it can be noted 

that in SSCUC, a single commitment schedule that satisfies all the scenarios are 

obtained as outputs. In terms of ML, this only increases the number of inputs, but the 

targets/outputs remain the same. Therefore, the MTLR and NN models are modified to 

increase S scenarios of net nodal load as input. 

Table 5.10. Modified IEEE 24-bus renewable system results 

Metrics MTLR R-SSCUC FL NN R-SSCUC FL 

Training Accuracy 96.57% 97.01% 

Testing Accuracy 94.53% 96.25% 

Infeasible samples 0 0 

BN cost 100.07% 100.01% 

BN Time 43.57% 36.78% 
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The proposed MTLR R-SCUC FL and NN R-SCUC FL were tested on the 

modified IEEE 24-Bus renewable test case with two renewable units. Table 5.10 shows 

the online verification results. It can be noted that the proposed MTLR and NN models 

can successfully handle stochastic inputs with solution accuracy of 94.53% and 96.25% 

for test samples. This is marginally lower than the deterministic case. However, 

utilizing the MTLR and NN solutions, we notice that the Reduced-SSCUC-FL (R-

SSCUC) results in higher time savings of 56.43% and 63.22% with respect to SSCUC. 

In comparison, the deterministic MTLR and NN based R-SCUC-FL only results in a 

time saving of 40.92% and 38.36% with respect to SCUC. This is because reducing the 

equivalent number of variables benefits R-SSCUC more since this directly relaxes a 

higher number of constraints when compared with R-SCUC. 

5.9.5.8. Section Remarks 

In this section we studied the differences between different classification 

techniques as an offline step namely, KNN, RF, LR and NN for predicting commitment 

schedules given the load profile. It was concluded that ML cannot directly replace 

optimization through SCUC. However, by choosing a confidence level through 

probabilistic outputs, selective binary variables were reduced in SCUC. LR and NN 

were more flexible due to the ability to result in probability estimates of commitment 

status of generators. Not only that, by studying the confusion matrix for ML 

predictions, both LR and NN led to higher accuracy and resulted in better predictions 
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when compared to KNN and RF. Furthermore, LR was also addressed for computation 

efficiency through a novel MTLR model. On average, the MTLR model was 2.4x faster 

than LR during offline training.  

The trained models were then introduced for online verification on test samples 

through post-processing ML solutions with FL. A confidence based variable selection 

and FL in combination produced desired effects of eliminating infeasible outputs while 

also maintaining high degree of solution-quality. On average across all test systems, 

model reductions with the proposed MTLR R-SCUC FL and NN R-SCUC-FL resulted 

in a speed-up 3.6x and 3.4x, respectively, when compared with SCUC. 

On top of this, it was established that the proposed approach is agnostic of MILP 

models. Therefore, the ML model was also tested on a modified IEEE 24-bus system 

with three renewable scenarios. The ML outputs were then similarly used for variable 

reduction in SSCUC. Online verification of MTLR and NN based R-SSCUC-FL 

resulted in a speed-up of 2.3x and 2.7x, respectively, when compared to SSCUC. In 

comparison, the deterministic R-SCUC-FL resulted in a speed-up of 1.7x and 1.6x, 

respectively, when compared to SCUC for the IEEE 24-bus system. It is also worth 

noting that the proposed model reduction approaches are compatible with any existing 

optimization/decomposition methods as well as ML methods aiming to remove some 

unnecessary constraints. 
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5.10. Advanced ML Models 

Most ML techniques work on simple data or flat data therefore only inputs and 

outputs were studied. However, power system is a connected system with a network 

topology and a higher resolution can be realized with graphs in GNN. Apart from this, 

GNN can be utilized to provide additional decision-making tools by studying the 

network along with nodal information of generation and loads. GNN can enhance 

reliability of the network and increase SCUC computation by suggesting system re-

connection or implement topology reconfiguration as a prediction which can be utilized 

as a candidate-list input in the stochastic optimization models. The future work for this 

research considers the use of advanced ML algorithms to understand the data patterns 

not only between demand profile and commitment schedule but also demand profiles 

and line loading.  

5.10.1.  Spatio-Temporal Classification Model 

A spatio-temporal (ST) approach is considered for advanced classification 

models. Since the demand and generators in the system is geographically distributed a 

special correlation of the data is required to be studied. This is considered using graph 

neural networks (GNN) where the inputs are represented in the form of graphs which 

mimic the network structure of power system. Not only that, the temporal correlation 

of the data can also be studied since SCUC is an optimization for day-ahead 24-hour 

system operations. Therefore, relationships between various hours of the day are key 
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since actions in earlier hours are utilized to determine actions performed in the rest of 

the periods. This is implemented using long short-term memory (LSTM) models in 

ML.  

The GNN layers and LSTM layers together form an advanced ML architecture 

for ST approach as represented in Fig. 5.15 and Fig. 5.16. In Fig. 5.15, a node-

classification ST model is trained to fit inputs of load profile and respective 

commitment labels where the input is fed through multiple GNN layers with activation 

and the resulting node embedding is then passed as inputs for the LSTM layer. Multiple 

GNN layers are utilized since each layer tries to identify the nodal relationship of 

neighboring nodes and additional layers gather information of nodes multiple hops 

from each node.  

 

Fig. 5.15. Spatio-temporal ML architecture for node classification. 

In Fig. 5.16, edge-classification ST model is trained to fit inputs of nodal load 

profile and critical lines in the system. Once the models are trained the ML predictions 
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are utilized not only to reduce binary variables but also reduce redundant constrained 

to bring about additional time-savings by further reducing the SCUC. In practicality, 

load profiles are also seasonal, and the consideration of such seasonal profiles seasonal 

patterns to improve the accuracy of the proposed models.  

 

Fig. 5.16. Spatio-temporal ML architecture for edge classification. 

5.10.2. Preliminary Node-Classification Results 

The mathematical model is formulated in AMPL. The data creation and 

verification steps are implemented using AMPL and solved using Gurobi solver. For 

ML step is implemented in Python 3.6. A computer with Intel® Xeon(R) W-2295 CPU 

@ 3.00GHz, 256 GB of RAM and NVIDIA Quadro RTX 8000, 48GB GPU was 

utilized. The data collected in section 5.9.5 involved steps for all power system 

components, [131]. Therefore, this existing SCUC data is also used for studies on 

advanced ST ML model.  
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Table 5.11 shows that a proposed ST model outperforms proposed ML models 

in section 5.8 and section 5.9. The same SCUC model and data from section 5.9 are 

used for preliminary results to classify generator commitment status. The ST model 

results in 0.75 – 1.6% increase in testing accuracy when compared to benchmark model 

which uses deep-neural network (DNN) which is an extension of ML model discussed 

in section 5.9. Fig. 5.17 and Fig. 5.18 shows the histogram of predictions errors in the 

test samples for ST and DNN models for the IEEE 73-bus system where ST model 

results in fewer prediction errors in comparison to DNN model. 

Table 5.11. Advanced ML Model Training Summary 

System 

DNN Accuracy (%) ST Accuracy (%) 

train test train test 

IEEE 24-Bus 97.16  97.01 98.31  (↑ 1.15) 98.40 (↑ 1.39) 

IEEE 73-Bus 95.82 95.65 97.04 (↑ 1.22%) 97.24 (↑ 1.59) 

IEEE 118 97.83 97.62 98.96 (↑ 1.13) 98.99 (↑ 1.37) 

SC 500 99.06 99.04 99.80 (↑ 0.74) 99.79 (↑ 0.75) 
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Fig. 5.17. Histogram of predictions (Spatio-Temoporal). 

 

Fig. 5.18. Histogram of predictions (Deep-NN). 
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Table 5.12 shows the verification results for R-SCUC utilizing advanced ML 

algorithms. It can be noted that algorithm 5.2 in section 5.9.4 is utilized without FL for 

the preliminary results. ST model eliminates infeasible problems without the 

requirement of FL whereas benchmark model still has infeasible problem. On average 

ST R-SCUC resulted in time savings of 48.05% on average across all test system with 

superior solution quality whereas DNN R-SCUC results in sub-par solution quality 

with the absence of FL and only results in time-savings of 39.30%.  

Table 5.12. R-SCUC Verification (Generator/Node Classification) 

System Model 

Infeasible 

cases 

Avg BN Cost 

(%) 

Avg BN Time 

saved (%) 

IEEE 24-Bus 

 

DNN  0 0 3.92 

ST 0 0.024 34.29 

IEEE 73-Bus 

DNN 7 0.12  50.83 

ST  0 0.034 44.23 

IEEE 118-Bus 

DNN 4 0.28 38.72 

ST 0 0.001 36.29 

SC 500-Bus 

DNN 13 0.13 63.72 

ST 0 0.062 77.40 



   

 

 

165 

5.11. Summary 

In this chapter various ML models with post-processing techniques were 

proposed to decrease the computational burden of the SCUC. Initially, the proof-of-

concept was implemented on a simplified SCUC model using LR algorithm assisted 

with post-processing techniques, P1–P2. P1–P2 results in problem size reduction 

which brings significant time-savings across multiple test systems. B2 provides 95% 

computational time savings for the large Polish system but is affected by solution 

quality and/or infeasible problems.  

Following this, the work was extended to a SCUC model considering minimum 

up/down time requirements for generators. Along with this, several ML algorithms, 

namely LR, NN, RF, MTLR were examined. MTLR and NN were later chosen to be 

superior in predictions and training time. FL was developed to address infeasibility in 

ML predictions thereby ensuring that R-SCUC models are always feasible. The 

proposed MTLR R-SCUC FL and NN R-SCUC-FL outperformed basic classification 

models by ensuing high solution quality while also resulting significant time 

reductions. An out-of-sample testing was also performed to showcase the effectiveness 

of FL.  

Finally, a ST model was proposed as an advanced ML model to perform node-

classification. The preliminary results with ST model show that ST model can 

outperform MTLR and NN models in predictions from the model accuracy and 
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verification results. Additionally, ST model predictions are made by learning the spatial 

and temporal correlation of input data, it does not require a FL.  
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6. CONCLUSIONS AND FUTURE WORK 

The work presented in this report addresses three key features, namely, (i) 

addressing system flexibility with existing components through smart algorithms, (ii) 

facilitate RES integration and efficient use of ESS, and (iii) scalability of such 

technologies by enhancing computational ability by reduction of problem complexity 

without loss of solution quality for day-ahead operations using SCUC. The results 

presented in this thesis are based on deregulated markets systems. However, SCUC is 

utilized in both deregulated markets and regulated markets and therefore this work can 

be feasible in both business scenarios. The contributions of the proposed work in this 

thesis have extensible reach and several opportunities for industrial adoption. The 

contributions of each chapter are presented in the following section, and finally the 

proposed research work for future is detailed at the end of this chapter. 

6.1. Contributions  

In Chapter 2, technologies such as CNR and CDR are discussed along with 

mathematical models. Existing power system operations do not use available system 

flexibility in the form of transmission network or demand response efficiently. 

However, with the advent of smart grids and two-way communication smarter 

algorithms can leverage additional savings in the system in day-ahead operations. 

Therefore, the use of NR and DR were first seen in Chapter 2 along with its constraint 



   

 

 

168 

modelling. It can be noted that they are modelled through explicit mathematical models 

and hence are stable algorithms.  

Currently, system operators implement demand response by dispatching 

controllable loads for economic reasons in day-ahead scheduling and use a static 

network in day-ahead solutions. Particularly, demand shifting from peak hours when 

the cost of electricity is higher to non-peak hours to maintain system reliability by 

flattening the load profile. The power system transmission networks are built with 

redundancy, but existing ISO practices also implement a static network to meet the 

supply and demand of electric power. One common reason for disregarding NR or DR 

in day-ahead operations is that it can cause large disturbance in the network. Therefore, 

the use of such technologies in response to power system contingencies as a corrective 

action were proposed since the system flexibility and economic benefits of such action 

in post-contingency scenarios are not explicitly considered in short-term operations.  

The proposed SCUC-CNR and SCUC-CDR mathematical model implementing 

a dynamic network and/or demand response in the post-contingency scenario as a 

corrective action provides significant system flexibility in the base-case. It can be noted 

that corrective solutions are implemented only if a contingency occurs. The presence 

of these actions also increases the reliability of the SCUC solution in the event of a 

contingency. Hence, this chapter highlights the benefits of demand response and 

network reconfiguration solutions as a corrective action for potential post-contingency 

emergencies in day-ahead scheduling. The proposed models were tested on the IEEE 
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24-bus system where results demonstrate significant total cost savings in daily 

operations. Moreover, the results point to better long-term reliability of generators 

along with the ability to use existing system flexibility, serve higher critical demands 

in base-case and offers a congestion relief tool along with elimination of congestions 

cost due to overloaded lines in both the base-case and post-contingency scenarios. 

Renewable energy sources (RES) have gained a lot of interest recently. 

Particularly, the increase in free RES is favorable to reduce carbon emission to reduce 

the dependence of fossil fuels and to decrease system cost. However, this comes with 

significant issues resulting from the high penetration of RES and the loss of reliability 

to the system since RES is unpredictable in nature. To add, the limited transmission 

capacity serving RES often leads to network congestion since they are located in remote 

favorable locations. As a result, when poorly scheduled, the intermittent nature of RES 

may result in high curtailments of the free resource. As a result, it can lead to significant 

curtailments of the free resource when the network is congested. Therefore, energy 

storage system (ESS) is considered as a viable solution to store energy and address the 

intermittent nature of RES though ESS is often distributed and may not be 

geographically close to RES. Therefore, ESS may also suffer from the limited 

transmission capacity due to network congestion. Currently, grid operators overlook 

network flexibility as a congestion management tool in day-ahead scheduling. 

Considering system flexibility can be an effective solution to address these issues and 

also facilitate further integration of RES. Therefore, Chapter 3 develops on the idea of 
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network reconfiguration strategies to use system flexibility and explores the possibility 

of utilizing network reconfiguration as a corrective action to reduce the transmission 

congestion and thereby the reduction of RES curtailments in day-ahead scheduling. To 

facilitate the RES integration in the grid, a multi-scenario stochastic N-1 security-

constrained unit-commitment with corrective network reconfiguration (SSCUC-CNR) 

is modelled. SSCUC-CNR model is studied on a modified IEEE 24-bus system with 

RES. The simulation results demonstrate that CNR not only leads to a lower cost 

solution by reducing network congestion but also facilitates RES integration by 

reducing congestion-induced curtailments in high penetration cases. Emission studies 

demonstrate that more green generators are committed resulting in reduced carbon 

emissions when CNR is implemented. Not only that, in Chapter 3 the concept of NR 

as both preventive and corrective solution provides further validation for efficient use 

of ESS by providing longevity of batteries.   

In most cases, the usage of such tools is deemed complex and hence not readily 

used in current industry practice. To address these two remedy solutions were 

proposed, a purely optimization technique through an accelerated-decomposition 

approach and a machine learning aided technique to reduce problem complexity was 

studied in Chapter 4 and Chapter 5, respectively.  

Firstly, as a purely optimization-based technique, a novel approach of A-

SCUC-CNR to handle the computational complexity with fast screening non-critical 

sub problems was developed using Benders’ Decomposition. The proposed approach 
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provides substantial computational benefits and is also applicable to SCUC. Simulation 

results on the IEEE 24-bus system show that the proposed methods are substantially 

faster without the loss in solution quality while the scalability benefits are demonstrated 

using larger cases: the IEEE 73-bus system, IEEE 118-bus system and Polish system.  

Secondly, a reduced-SCUC model is implemented with a novel approach 

utilizing ML to predict commitment schedules using nodal demand patterns. 

Additionally, this approach can easily be utilized by any decomposed, heuristic or sped-

up algorithms for SCUC. The proposed approaches were validated on several standard 

test systems namely, IEEE 24-bus system, IEEE 73-bus system, IEEE 118-bus system, 

synthetic South Carolina 500-bus system and Polish 2383-bus system. Simulation 

results demonstrate that the proposed post-processing technique ensure selective 

utilization of ML prediction can reduce the number of variables and constraints in 

SCUC, which substantially reduces the computing time while maintaining solution 

quality. 

6.2.  Future Work 

In chapter 4, scalability of SCUC algorithms were proposed using an 

accelerated Bender’s decomposition algorithm while also addressing system reliability 

with economic actions by introducing technologies such as CNR. In chapter 5, ML 

algorithms were leveraged for model-reduction base-case constraints of SCUC thereby 

increasing the overall computational efficiency. Along with this preliminary case 



   

 

 

172 

studies for the proposed model considering multi-scenario SSCUC models were also 

shown. The future work can be considered in bridging the technologies together 

encompassing both system reliability constraints, system flexibility, decomposition-

algorithms and ML based model-reduction.   

Additionally, in Chapter 5, only variable reduction of SCUC were implemented 

by predicting generator status using ML. This can also be extended to predict constraint 

reductions by predicting critical lines to monitor in the network by utilizing the 

advanced ST model. Since ST models leverage layers such as GNN, to topography of 

the network can be further studied to make predictions and only critical lines require to 

be modelled. Furthermore, data related weather patterns and scenarios can be studied 

to predict system reserve limits to address RES outputs for SSCUC. 
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