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Abstract—Conventional synchronous machines are gradually 
replaced by converter-based renewable resources. As a result, 
synchronous inertia, an important time-varying quantity, has 
substantially more impact on modern power systems stability. The 
increasing integration of renewable energy resources imports 
different dynamics into traditional power systems; therefore, the 
estimation of system inertia using mathematical model becomes 
more difficult. In this paper, we propose a novel learning-assisted 
inertia estimation model based on long-term recurrent 
convolutional network (LRCN) that uses system wide frequency 
and phase voltage measurements. The proposed approach uses a 
non-intrusive probing signal to perturb the system and collects 
ambient measurements with phasor measurement units (PMU) to 
train the proposed LRCN model. Case studies are conducted on the 
IEEE 24-bus system. Under a signal-to-noise ratio (SNR) of 60dB 
condition, the proposed LRCN based inertia estimation model 
achieves an accuracy of 97.56% with a mean squared error (MSE) 
of 0.0552. Furthermore, with a low SNR of 45dB, the proposed 
learning-assisted inertia estimation model is still able to achieve a 
high accuracy of 93.07%.  

Index Terms—Convolutional neural network, Inertia 
estimation, Long-term recurrent convolutional network, Low 
inertia power grid, Phasor measurement unit, Virtual inertia. 

I.  INTRODUCTION 
Inverter-based renewable energy sources (RES) are replacing 

traditional synchronous generators with the primary goal of 
carbon dioxide emission reduction and environmental benefits. 
Due to the increasing grid integration of inverter-based 
resources such as wind power, solar photovoltaics (PV) and 
energy storage systems (ESS), system inertia traditionally 
coming from synchronous generators decreases significantly 
[1]. System with insufficient synchronous inertia is more likely 
to suffer high rate of change of frequency (RoCoF) and large 
frequency excursion during a contingency, resulting in under 
frequency load shedding (UFLS) as well as tripping of 
frequency related generator protection devices; the failure of 
successive units would furthermore cause cascading outages [2]. 

Inertia estimation can help market design for ancillary 
services and improve power system reliability through 
implementation of frequency control ancillary services [3]. 
Traditionally, system frequency response is analyzed by looking 
at the collective performance of all generators using a system 
equivalent model. The system equivalent inertia constant is 

determined by the number and size of actively connected 
synchronous units. However, the variability nature of RES 
imports uncertainties into the system inertial response as well as 
system inertia constant [4]. Recent study in [5] shows that 
control schemes can be used to emulate synchronous machine 
response; such concept introduces techniques like virtual inertia. 
Additionally, RES such as wind power is interfaced to the grid 
through converters which electrically decouples the rotor’s 
inertia from the grid, thus RES and other inverter-based sources 
are traditionally considered passive in terms of inertial response. 
Therefore, the system inertia constant can only be estimated 
using ambient wide area measurements.  

Traditionally the ability of inertia estimation is mostly 
dependent on factors like size of disturbance, accuracy of 
frequency measurement and location of measurement point 
relative to in-feed loss [6]. Inertia estimation using ambient wide 
area measurements was proposed in [7]. The method divides the 
system into a number of subareas and estimates inertia of each 
subarea separately, but the approximation made in mathematical 
model introduces more error in the final results. The Electric 
Reliability Council of Texas (ERCOT) uses a real-time 
sufficiency monitoring tool to monitor inertia based on the 
operating plans submitted by the generation resources [8]. 
Modern power systems are connected to different devices which 
provide frequency regulation service; meanwhile considering 
the inertia contribution from demand side, the inertia constant 
estimation based purely on synchronous generators is inaccurate 
[9]. Inertia estimation based on mathematical model is also 
highly dependent on accuracy of ambient measurements from 
phasor measurement units (PMUs) or equivalent devices, and 
the estimated value may suffer inaccuracy in various conditions. 
As RES penetration level increases, the swing equation-based 
models may no longer represent the system dynamics.  

A neural network-based inertia estimation technique is 
proposed in [10].  The proposed method uses inter-area model 
information as neural network inputs and estimates the inertia 
constant as an output of the network. However, this approach 
only estimates the inertia constant for large systems with only 
traditional synchronous generation. A convolutional neural 
network (CNN) based model is proposed in [11], which 
estimates the system inertia through frequency response and 
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RoCoF data; only equivalent frequency measurements are 
considered in this approach, such that results may suffer high 
errors when non-monotonic frequency deviation occurs.   

In this paper, we propose a model-free ambient 
measurements based machine learning approach to dynamically 
estimate the system inertia constant. Long-term recurrent 
convolutional network (LRCN) is used to identify spatial 
features of the input data and process sequential data. Ambient 
wide measurements obtained from the PMUs are selected as 
candidate features for the proposed model. The major 
contributions of this work are: (a) an LRCN based algorithm is 
proposed; (b) a wrapper feature selection is used to optimize the 
feature combination set; (c) ambient measurements under 
multiple conditions are examined, which improves the 
estimation accuracy as well as estimator robustness.  

The remainder of this paper is organized as follows. In 
section II, the frequency dynamics of power systems are 
described. Section III details the proposed inertia estimation 
algorithm using LRCN. Section IV describes the simulation 
setup, and the results and analysis are presented in Section V. 
Section VI presents the concluding remarks and future work.  

II.  SYSTEM FREQUENCY DYNAMICS  
The inertia constant is a parameter describing the ability of 

synchronous generator in counteracting the frequency excursion 
due to power imbalance occurring in power systems. The energy 
stored in large rotating generator and some industrial motors 
gives them the tendency to remain rotating. The rotational 
energy Ei in the rotor of the machine at nominal speed is defined 
by the following formula: 

Ei = 
1
2

J𝑖𝑖𝜔𝜔𝑖𝑖
2 (1) 

where J𝑖𝑖 is the moment of inertia of the shaft in kg∙m2s and 𝜔𝜔𝑖𝑖 
is the nominal rotational speed. The inertia constant 𝐻𝐻𝑖𝑖  is then 
given in seconds, which can be expressed as: 

𝐻𝐻𝑖𝑖  = 
J𝑖𝑖𝜔𝜔𝑖𝑖

2

2S𝐵𝐵𝑖𝑖
(2) 

where S𝐵𝐵𝑖𝑖  is the generator rated power in MVA. When multiple 
generators connected to the power system, dynamics of these 
generators’ rotors are directly coupled with the grid electrical 
dynamics. Thereby the power system could be represented by a 
single equivalent model of inertia. The total power system 
inertia 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 is then considered as the summation of the kinetic 
energy stored in all dispatched generators synchronized with the 
power system. It can be shown in the form of either the stored 
kinetic energy or inertia constants as follows. 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 = �
1
2

J𝑖𝑖𝜔𝜔𝑖𝑖
2

𝑁𝑁

𝑖𝑖=1

= �𝐻𝐻𝑖𝑖𝑆𝑆𝐵𝐵𝑖𝑖
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(3) 

The inertia constant of the power system in seconds is given 
by the equation below, 

𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠  = 
∑ 𝐻𝐻𝑖𝑖𝑆𝑆𝐵𝐵𝑖𝑖
𝑁𝑁
𝑖𝑖=1

𝑆𝑆𝐵𝐵
(4) 

where power 𝑆𝑆𝐵𝐵 is the total rated power of the whole system. 
The simplified system equivalent model is based on the 

extension of one-machine swing equation. For a single machine, 
the dynamic of its rotor can be described in (5) with M = 2H 

denoting the normalized inertia constant and D denoting 
damping constant respectively. 

∆𝑃𝑃𝑚𝑚 − ∆𝑃𝑃𝑒𝑒 = 𝑀𝑀
𝑑𝑑∆𝜔𝜔
𝑑𝑑𝑑𝑑

+ 𝐷𝐷∆𝜔𝜔 (5) 

where ∆𝑃𝑃𝑚𝑚 is the total change in mechanical power and ∆𝑃𝑃𝑒𝑒  is 
the total change in electric power from the power system. 
𝑑𝑑∆𝜔𝜔/𝑑𝑑t is commonly known as rate of change of frequency 
(RoCoF). 
    As most inertia estimation approaches rely on event transient 
measurement of collective system model following recorded 
disturbances, studies in [12] have found that the equivalent 
system model may be affected by inertia heterogeneity and thus 
cause issues in system operations. Therefore, dynamic model is 
preferred in modern power system analysis. Using the 
topological information and system parameters, when multiple 
generators connected in a bus, as an approximation, equivalent 
equation (5) can be extended and applied to all buses to describe 
the oscillatory behavior of each individual bus, 

𝑚𝑚𝑖𝑖�̈�𝜃𝑖𝑖 + 𝑑𝑑𝑖𝑖�̇�𝜃𝑖𝑖  =  𝑝𝑝𝑖𝑖𝑖𝑖,𝑖𝑖  −  𝑝𝑝𝑒𝑒,𝑖𝑖 (6) 
where 𝑚𝑚𝑖𝑖  and 𝑑𝑑𝑖𝑖  denote the inertia coefficient and damping 
ratio for node i respectively, while 𝑝𝑝𝑖𝑖𝑖𝑖,𝑖𝑖  and 𝑝𝑝𝑒𝑒,𝑖𝑖  refer to the 
power input and electrical power output, respectively. Different 
from focusing on the collective performance of the power 
system, the frequency response experienced by each bus could 
be very distinct. Accordingly, the ambient measurements from 
the system would provide more information of each subarea and 
thus improve the accuracy of estimation model.   

III.  INERTIA ESTIMATION USING LRCN 
A. System Perturbation using Probing Signal 

Probing signal is a method to conduct power system dynamic 
studies in situations involving system perturbation without 
affecting system stability [13]. A sample probing signal, fed to 
the system with an amplitude of 𝑃𝑃𝐸𝐸 , and corresponding PMU 
measurements are shown in Fig. 1.  

 
Fig. 1. A sample of probing signal, ambient measurements for 𝑃𝑃𝐸𝐸=0.001 p.u. 

    With varying system inertia and probing signal amplitude, a 
number of ambient measurements of Δ𝜔𝜔, ∆�̇�𝜔 and v can then be 
collected. 
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B. Inertia Estimation using LRCN 
    Estimation of inertia constant is quite challenging due to the 
non-linear nature of the power system. Since LRCN leverages 
the strength of rapid progress in CNN and has the ability to 
capture the dependencies in a sequence, it has been successfully 
used in computer vision, image processing, and other fields in 
signals and time-series analysis [14]. The architecture of 
proposed LRCN model is displayed in Fig. 2 and can be trained 
to estimate system inertia from ambient measurements obtained 
from the PMU.  
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Fig. 2. General architecture of proposed LRCN model. 

    The proposed LRCN model processes the measurements 
input with CNN layers first, whose outputs are then fed into long 
short-term memory (LSTM) recurrent sequence model, and the 
fully connected layer finally produces inertia constant 
estimation. The entire dataset is divided into two sets before 
training: training set (80%) and testing set (20%). The samples 
in training set are defined in batches which will be propagated 
through the networks. One epoch of training is completed when 
all the training samples have been passed forward and backward 
once. The number of iterations is defined as the number of 
passes, and each pass uses the same batch size that is the number 
of samples. At each training iteration, the LRCN model input 
size is b × c, and the output will be a column vector of size b 
with inertia estimates for corresponding input in the batch. The 
dimension of c is determined by the set of features and feature 
sampling rate.   
    The mean squared error (MSE) measures the average squared 
difference between actual and predicted outputs. The goal of 
training is to minimize MSE via back propagation which will 
provides best estimator [15]. The fully connected network used 
in this model includes one flatten layer and two hidden layers. 
MSE is defined as: 

𝑀𝑀𝑆𝑆𝐸𝐸 =
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑖𝑖

𝑖𝑖=1

(7) 

where n is the total number of training samples, 𝑦𝑦𝑖𝑖  is the actual 
value of 𝑖𝑖𝑡𝑡ℎ output, and 𝑦𝑦�𝑖𝑖 is the estimated value corresponding 
to the 𝑖𝑖𝑡𝑡ℎ output. Similarly, the weight update equation via back 
propagation is expressed as: 

𝑤𝑤𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 − 𝛼𝛼
𝜕𝜕𝐸𝐸𝑀𝑀𝑀𝑀𝐸𝐸
𝜕𝜕𝑤𝑤𝑡𝑡

(8) 

where 𝑤𝑤𝑡𝑡  is the weight for current iteration, 𝑤𝑤𝑡𝑡+1 is the updated 
weight for next iteration, α is the learning rate, and 𝐸𝐸𝑀𝑀𝑀𝑀𝐸𝐸 is the 
MSE obtained from expression (7). 

IV.  SIMULATION SETUP 
A. Overview 
    The IEEE 24-bus system [16] was used for the experiment to 
collect the training data. The system has 24 buses (17 buses with 
loads), 38 branches, and 38 generators. System inertia M 
typically ranges from 3s to 8s. Hence, the measurements 
snapshots were collected for 11 different values of M from 3s to 
8s with an increment of 0.5s. Similarly, probing signals with 100 
different values of 𝑃𝑃𝐸𝐸  from 0.001 p.u. to 0.01 p.u. with an 
increment 0.0001 p.u. were used. 
    The modeling and simulation of the power system, along with 
data collection, were conducted in MATLAB/Simulink 2019b. 
The data pre-processing was conducted in both MATLAB and 
Python. The proposed LRCN model including CNN and LSTM 
layers was developed in Python using Keras.  
B. Data Preprocessing 
    The initial data analyzed in this study were acquired from 
PMUs with a sampling rate of 2880 Hz; for each nodal 
measurement of Δ𝜔𝜔  and ∆�̇�𝜔  it gives 2880 data points at a 
sampling frame of 1s. By using only one second sampling frame 
for normalization, the real-time applicability of this method is 
maintained. Similarly, following the same pattern we obtained 
2880 data points per second for nodal voltage measurement v.  
Since the training data come from the ambient measurements of 
all PMUs, without dimension reduction process the original 
training data would increase the complexity of the model and 
may also lead to overfitting. Therefore, we first downsample the 
data of all measurements to 200 Hz similar to [11]. Next, we 
manually add the additional Gaussian noise signal in the 
constituent tonic to mimic the noisy measurements. Different 
signal-to-noise ratios (SNR) are investigated in this paper. Since 
we analyze the data collected between multiple sessions, the 
measurements are normalized by employing min/max 
normalization and thus all input data ranges between [0, 1].  
C. Feature Selection 
    To find the best time frame of data extraction, different time 
windows of the ambient measurements are determined: (1) the 
time frame is first chosen from 0s to 1s following the 
perturbation, where initial RoCoF is included; (2) the second 
time frame is from 0.5s to 1.5s after the signal infeed. With Δ𝜔𝜔 
and ∆�̇�𝜔  as basic features combination, the coefficient of 
determination and validation accuracy are used as evaluating 
metrics.  
    In order to determine the optimum set of features for use in 
the estimation of the system inertia constant, a wrapper feature 
selection is utilized using (i) the proposed LRCN model as the 
estimator, (ii) accuracy score with a tolerance of 10% as the 
evaluation metric, (iii) greedy forward selection as the subset 
selection policy.  
D. Hyperparameters Selection 
     With a resampling rate of 200Hz, measurements on each 
node gives 200 data points at a sampling frame of 1s. In this 
paper, we first consider the ambient measurements of Δ𝜔𝜔 and 
∆�̇�𝜔 on generator buses and thus we obtain the base vector with 
dimension of 𝑐𝑐 = 400 × 10 . For the convolution layers, the 



  

 
  

channel number are set p = 10 and q = 20, and kernels with sizes 
r = s = 3. Rectified linear unit (ReLU) is used as the activation 
function. The memory unit value l of LSTM layer is set as 32 
and the number of neurons in the flatten layer can be manually 
calculated as 𝑓𝑓 = 79,960. The training was operated in batches 
of 32 data points. An MSE based dynamic learning rate strategy 
is used for the training. Learning rate schedule is applied in the 
training process by reducing the learning rate accordingly, the 
factor by which the learning rate will be reduced is set 0.5 and 
the patience value is set 10 epochs.  

V.  RESULT ANALYSIS 
    A total of 1,100 samples were collected, the entire dataset is 
first divided into two subsets: 880 samples (80%) for training 
and 220 samples (20%) for validation. To leverage the fast-
computing abilities of Keras, the machine learning model was 
trained on NVIDIA Quadro RTX 8000 GPUs.  
A. Time Frame Selection 
    Measurements Δ𝜔𝜔  and ∆�̇�𝜔   are selected as training feature 
combination [11]; training data extracted from two periods are 
then fed into the proposed LRCN model. Fig. 3 compares the 
scatter points predicted by the proposed LRCN model with 
features extracted from 0.5s - 1.5s and 0.0s - 1.0s respectively.  

 
(a) Features extracted from 0.5s - 1.5s.  

  
(b) Features extracted from 0.0s - 1.0s. 

Fig. 3. System inertia constant prediction results with the proposed LRCN 
model using features extracted from different time periods. 

    The coefficient of determination of the model using features 
extracted from 0.0s - 1.0s is 0.9625 which outperforms the use 
of features extracted from 0.5s - 1.5s at 0.7619. As expected, the 
LRCN model using features extracted from 0.0s - 1.0s has a 
validation accuracy of 97.56% with a tolerance of 10%, while it 
is only 75.64% for the use of features extracted from 0.5s - 1.5s. 

Thus, we consider that features extracted from the time frame 
following the disturbance contain prominent inertial response, 
and accordingly have a positive impact on the overall 
performance of inertia constant estimation model.      
B. Analyzing the Performance Metrics 
    Table I compares the performance of LRCN models utilizing 
different feature combinations. It can be observed that Δ𝜔𝜔 and 
∆�̇�𝜔  is selected as the optimized set of features which 
outperforms other feature combinations. 

 Table I  
Comparison of different features sets for the proposed LRCN model 

Features Set Δ𝜔𝜔 ∆�̇�𝜔 Δ𝜔𝜔 + ∆�̇�𝜔 Δ𝜔𝜔 + ∆�̇�𝜔 + v 
Validation 
Accuracy 74.43% 91.68% 97.56% 95.16% 

Mean 
Squared Error 0.2756 0.1704 0.0552 0.1023 

Coefficient of 
Determination 0.8618 0.9234 0.9625 0.9416 

Table II  
Comparison of different models  

Model Validation 
Accuracy 

Coefficient of 
Determination 

Mean Squared 
Error 

CNN 97.56% 0.9219 0.0998 
LRCN 89.59% 0.9625 0.0552 

    The proposed LRCN based approach are compared with 
benchmark CNN algorithm [11] in Table II. Both algorithms are 
employed to train the inertia constant estimation model. The 
results show that the coefficient of determination of LRCN 
model is 0.9625 which is higher than the coefficient of 
determination (0.9219) of CNN model. Additionally, the 
proposed LRCN model has a validation accuracy of 97.56%, 
with an MSE of 0.0552. For the benchmark CNN model, Δ𝜔𝜔 
and ∆�̇�𝜔 are used as primary features to train the model, resulting 
in a coefficient of determination of 0.9219, with an MSE of 
0.0998. The validation accuracy of CNN model with 10% 
tolerance is calculated as 89.59%, which is much lower than the 
proposed LRCN model. The results demonstrate that the optimal 
set feature is achieved by utilizing wrapper feature selection 
approach, and thus improves the algorithm performance. Fig. 4 
presents the evolution of MSE losses on the training and 
validation sets over the training process of the proposed LRCN 
model. MSE decreases as the number of epochs increases.  

   
Fig. 4. The learning curve of the proposed LRCN model: MSE losses versus 

the number of epochs.  

C. Performance with Lower SNR 
    In addition to the ideal condition, the proposed algorithm is 
compared with the benchmark CNN model under high noise 
conditions. Study in [17] has shown that a SNR of 45dB is 



  

 
  

considered a good approximation of noise power under realistic 
condition. Fig. 5 shows the inertia constant estimates from CNN 
model with Δ𝜔𝜔  and ∆�̇�𝜔  as training features. After adding 
additional Gaussian noise signal with a SNR of 45dB to the 
ambient measurements, the overall MSE of traditional CNN 
model increases from 0.0998 to 0.1816, while the coefficient of 
determination reduces from 0.9219 to 0.8852. Understandably, 
a significant reduction in validation accuracy can be observed, 
which drops from 89.59% to 76.36%.  

 
Fig. 5. Prediction results of the benchmark CNN model with SNR at 45dB. 

 
Fig. 6. Prediction results of the proposed LRCN model with SNR at 45dB. 

    The prediction results of the proposed LRCN model are 
presented in Fig. 6. The method described in this research uses 
a wrapper feature selection process and then, the measurements 
of Δ𝜔𝜔, ∆�̇�𝜔 and v are selected as the optimal set of features used 
for inertia constant estimation. The results show that the 
proposed LRCN model has a validation accuracy of 93.07%, 
with an MSE of 0.1545. In summary, (i) under a low noise 
condition with SNR of 60dB, measurements of Δ𝜔𝜔 and ∆�̇�𝜔 are 
the optimal set of features suitable for inertia estimation; (ii) 
under high noise condition with SNR of 45dB, the performance 
of benchmark model decreases significantly, while the proposed 
LRCN model based on optimal features combination of Δ𝜔𝜔, ∆�̇�𝜔 
and v shows higher robustness and better performance. 

VI.  CONCLUSIONS 
    Neural networks have been applied to inertia estimation as 
extensive amounts of data can be obtained from power system 
digital equipment and advanced measuring infrastructures such 
as PMU. In this paper, an LRCN based learning algorithm is 
proposed to estimate system inertia constant. System wide 
ambient measurements are used as candidate features for model 
training, and a wrapper feature selection is also used to optimize 

the feature combination. Results demonstrate that the proposed 
LRCN algorithm has a better performance than the benchmark 
CNN model in the literature. The proposed algorithm also shows 
high robustness under conditions with higher noise. Considering 
that the IEEE 24-bus system model used in this research has a 
mix generation of both synchronous generators and inverter-
based resources, the proposed approach can also be applied to 
estimate inertia constant in realistic conditions.  
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