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Abstract—As renewable resources gradually replace conventional 

generation based synchronous machines, the dynamics of the 

modern grid changes significantly and the system synchronous 

inertia decreases substantially. This transformation poses severe 

challenges for power system stability; for instance, it may lead to 

larger initial rate of change of frequency and increase frequency 

excursions. However, new opportunities also arise as novel 

converter control techniques, so-called grid-forming strategies, 

show higher efficiency and faster response than conventional 

synchronous generators. They mainly involve virtual inertia (VI) 

emulation to mimic the behavior of synchronous machines. In this 

study, a state-space model for the power system network is 

developed with VI as a frequency regulation method. A reduced 

model based ��-norm algorithm (RMHA) considering the Fiedler 

mode impact is proposed in this paper to optimize the allocation of 

VI devices and improve power system frequency stability. Finally, 

case studies conducted on the IEEE 24-bus system demonstrate the 

efficacy of the proposed RMHA approach.  

 

Index Terms— Frequency stability, Grid-forming converter, ��-norm, Low inertia power systems, Optimal virtual inertia 

allocation, Virtual inertia. 

I.  INTRODUCTION 

odern power systems are required to accommodate an 

increasing volume of renewable energy sources. 

Increasing penetration of converter based renewable energy 

sources (RES) has introduced dynamic changes in modern 

power systems. Traditionally, the system inertia is primarily 

provided by the conventional synchronous generators. Due to 

the strong coupling between the synchronous generator’s rotor 

and the power system, the inertia stored in synchronous 

generator rotor plays an important role in regulating the power 

system frequency dynamics. The system inertia can largely 

affect the initial rate of change of frequency (RoCoF) which 

manifests the dynamics between power and frequency during a 

short period of time following a power mismatch event. 

Despite the coronavirus pandemic [1], the annual global 

renewable capacity addition increased by 45% to around 280 

GW in 2020 [2]. In South Australia power system, the 

instantaneous penetration level of wind and solar capacity 

reaches 50% [3]. For Nordic, renewable generation has taken the 

place of nuclear power plants. A consequence of this transition 

is low inertia which is considered as one of the three main 

challenges faced by the system operator [4]. In the ERCOT 

system, wind power has rapidly developed over the last 20 years, 

and wind power accounted for 15% of the total generation in 

2017 [5].  

Different from synchronous generators, RESs are completely 

decoupled from the grid by the converter, making low to zero 

contributions to power system inertia. High penetration level of 

RES not only results in the degradation of system frequency 

response [6], but it also increases frequency fluctuation due to 

variability nature of the RES generation. Thus, frequency 

regulation becomes much more important for the future low 

inertia power systems than the traditional power grid with little 

intermittent renewable generation. Different inverter-based 

frequency control schematics have been introduced to address 

frequency stability challenge which can potentially affect the 

dynamic response of the system in a more active manner. For 

instance, the synthetic governor control method reserves the 

wind power generation by making wind turbines work in the 

over-speed zone instead of maximum power point tracking 

(MPPT) [7]. Wind power plant inertia control takes advantage 

of the kinetic energy stored in wind turbines and provides a 

synthetic inertial frequency response in seconds [8].  

    These studies [7]-[8]  have demonstrated the efficacy of 

virtual inertia (VI) method which imitates the kinetic inertia of 

synchronous generator to improve the system dynamic behavior 

[9]. There are different implementations for synchronous 

machine response emulation with varying fidelity. Virtual 

inertia techniques for solar PV generation have been 

investigated by [10]. It is noted that the virtual inertia requires 

fast responsive energy buffer; the kinetic energy in a wind 

turbine and the energy in a battery are limited energy resources 

for virtual inertia responses.  

    Traditionally, by looking at the collective performance of all 

generators using a system equivalent model, a number of 

performance metrics including frequency nadir and RoCoF are 

proposed to quantify power system stability. The impact of 

reduced inertia on system stability has been investigated in [11] 

where RoCoF and frequency nadir-based constraints are 

included in the system optimization model. The authors in [12] 
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adopted an approach based on ��  performance metric 

accounting for the network coherency. However, [13] shows 

that inertia and frequency response cannot be considered as 

system-wide magnitudes in power systems. It raised the concern 

of optimal inertia allocation in the power system.  

     This paper is to address the aforementioned issues. The 

contributions of this paper are presented as follows. Explicit 

models of grid-forming converter (GFC)-based virtual inertia 

devices are defined to show how such devices contribute to 

power system frequency stability. In addition, these models are 

suitable for integration with large scale power system models. 

In the end, we propose a reduced model based �� -norm 

algorithm (RMHA) to optimally tune the parameters and the 

placement of the VI devices in order to enhance the stability of 

low inertia power systems. The reduced model eliminates 

passive buses and its Fiedler mode manifests the frequency 

dynamics of generator buses. Moreover, as a performance 

metric, the ��-norm based on the proposed reduced model is 

established beyond the prototypical swing equation. 

        The remainder of this paper is organized as follows. 

Section II discusses the power system equivalent model and 

dynamic model. Section III presents the performance metrics for 

grid stability and the proposed RMHA method. Section IV 

shows the simulation results. Section V presents the concluding 

remarks and future work.  

II.  SYSTEM FREQUENCY DYNAMICS  

A.  System Equivalent Model 

The simplified system equivalent model is based on the 

extension of one-machine swing equation. Applying to an 

electrical power system that it directly connects rotating 

machines, the resistance to the change in rotational speed is 

impacted by the rotating inertia of the rotating mass. The 

rotating inertia of a synchronous generator is also equal to the 

stored energy Ei in the rotors of the machine at nominal speed, 

which is defined as: 

Ei = 
1

2
 Ji�� � 	1� 

The rotational inertia of a single shaft is commonly defined 

using its inertia constant given in seconds. It also depends on the 

rated apparent power [14].  For a single machine, the inertia 

constant can be expressed as: 

��  = J����
2S� 	2� 

where ��  is the inertia constant of the generator in seconds; J� is 
the moment of inertia of the shaft in kg∙m2 s; S�  is the base 

power in MVA; and �� is the nominal rotational speed instead 

of the actual speed of the machine. It should also be noted that 

the rotational inertia provided by a single generator is not 

affected by the actual output power of the generator. 

Generators provide rotational inertia to the power system; 

dynamics of these generators’ rotors are directly coupled with 

the grid electrical dynamics. Thereby the power system could be 

represented by a single equivalent model of inertia; the total 

power system inertia ���� is then considered as the summation 

of the kinetic energy stored in all dispatched generators 

synchronized with the grid. It can be shown in the form of either 

the stored kinetic energy or inertia constants as follows. 

���� = � 1

2
J��� ��

���
= � ����

�
���

	3� 

Then the total power rating of the whole power system is 

represented by 

� = � ��
�

���
	4� 

The inertia constant of the power system in seconds is given 

by the equation below, 

����  = ∑ ��������� 	5� 

The swing equation (6) describes the rotor dynamics of the 

synchronous generator and thereby it also describes the dynamic 

behavior of the system frequency during a short period of time 

following a disturbance of power mismatch. For a single 

generator �, the swing equation can be expressed as d��dt
 = 

� − �"#$%
2��S� �n 	6� 

where �  is the mechanical power and �"#$%  is the load from the 

power system, while �n is the rated steady state frequency of the 

system. d�i/dt is more commonly known as rate of change of 

frequency. 

The swing equation of the equivalent model can be applied to 

the whole system. After a disturbance of power mismatch 

occurrence, the swing equation relates the RoCoF to the total 

system inertia, d�dt
 = 

−∆�
2����S �n 	7� 

where ∆� is the change in active power in MW. 

B.  Dynamic Model  

The synchronous generator contributes inertia to the power 

system through coupled mechanical dynamics of rotor and the 

electrical dynamics of the whole power system [15]. For a single 

machine, the dynamic of its rotor can be described in (8) with M 

and D denoting the normalized inertia and damping constants 

respectively. � − �) = * + △ �+- + / △ ω 	8� 

   The transmission network can be considered as a graph 

consisting of nodes (buses) and edges (branches). Using the 

topological information and system parameters, the swing 

equation that describes the single generator dynamics can be 

applied to all buses to describe the oscillatory behavior of each 

individual bus [15], 2�34� + +�35�  =  6�7,�  −  6),� 	9� 

where 2�  and +�  denote the inertia coefficient and damping 

ratio for node i respectively, while 6�7,�  and 6),�  refer to the 

power input and electrical power output, respectively. Under the 

assumptions of identical unit voltage magnitudes, the electrical 

power output at the terminals is related to the voltage phase 

angles {θi } and can be calculated as follows. 

6),� = � ;�<=3�  −  3<>,   � ∈ @1, … , BC7
<��

	10� 



  

 

  

If a bus is a passive load bus, then 2� is considered as zero 

due to the neglectable contribution to the system frequency 

dynamics. Since there is no primary droop control on a load bus, 

the load damping +� is considered as zero. If a bus is connected 

to generators, then 2�  is the ensemble of nodal generator’s 

rotational inertia and +� is the nodal droop control coefficient.  

     

III.  METHODOLOGY 

     In this section, we proposed a novel RMHA method to 

optimize the allocation of virtual inertia. The effect of Fiedler 

mode of our proposed reduced model on frequency dynamics 

are discussed in our studies. Furthermore, the performance 

metrics considering the Fiedler mode impact are defined to 

assess the system frequency stability when subjected to a 

disturbance.  

A. Impact of Fiedler Mode 

    We combine equations (9) and (10) to express the system 

dynamics, and then the phase angle deviations 3  can be 

expressed by *34  + / 35 =  � −  E 3 	11� 

where * = diag({2�}), / = diag({+�}); the nodal power input 

is represented by vector P; and  for the Laplacian matrix L of the 

grid, a linear approximation can be justified considering the 

angle difference of the voltage phasors are small, giving  off-

diagonal elements F�< = −;�<G�	H�G<	H�
 and diagonal elements  F�� = ∑ ;�<G�	H�G<	H�7<��,<I� . The Laplacian matrix is real and 

symmetric, as such it has a complete orthogonal set of 

eigenvectors { J� } with eigenvalues { K� }. The frequency 

deviations at bus � can be described as follows,  

L3M5 	-� =  ∆�OPQR�2 � JS�JST
U�B VWKS2 − X�4 -Y

WKS2 − X�4
�

S��
	12� 

As K� = 0 and the first elements of the eigenvectors JS��,� 
are all identical, the term associated with Z = 1 on the right 

hand side of (12) gives a position-independent contribution to 

the RoCoF and it is inversely proportional to the inertia 

coefficient 2 . The terms associated with Z [ 1  reveal 

oscillations with both amplitude and period depending on \KS/2 − X�/4  [16]. In this paper, we consider the frequency 

dynamics of generator buses instead of load buses. By 

eliminating the passive load buses via Kron reduction [18], we 

propose a network-reduced power system model with generator 

buses only and, thus, all the 2  values are positive for this 

reduced model. For the reduced model of the IEEE 24-bus 

system, \KS/2 − X�/4 ranges from [1.29, 20.58] for  Z [ 1; 

high-lying eigenmodes with large Z  and large eigenvalues KS 

contribute much less than low-lying eigenmodes. Hence, the 

slowest mode among all modes with  Z [ 1 is chosen as the 

metric to measure the regional frequency oscillation amplitude 

which is called the Fiedler mode [16].   

 
Fig. 1. Fiedler mode distribution.  

Fig. 1 shows the distribution of Fiedler mode of the reduced 

Laplacian matrix of the IEEE 24-bus system. It can be observed 

that absolute values of Fiedler mode on bus 13 and bus 23 are 

close to zero, implying relatively less oscillation amplitude for 

those two buses. Fiedler mode on bus 7 is the largest which 

indicates larger oscillation. In order to investigate how Fiedler 

mode affects the frequency response, a contingency case with 

disturbance on bus 18 is simulated and the frequency responses 

are shown in Fig. 2. The results show that bus 7 suffers largest 

frequency oscillation which verifies the previous inference; the 

frequency on bus 23 is the closest to the center of inertia (COI) 

frequency response [17], which implies less oscillation. 

 

 
(a) Frequency for period between t=0 and t=5s. 

 
(b) Frequency for the period between t=2s and t=4s. 

Fig. 2. Frequency responses following a disturbance on bus 18.  
 

B. ��-norm Optimization 

    The implementation of virtual inertia requires active control 

over GFC-based resources such as distributed RESs and energy 

storage systems. However, such GFC-based resources are 

limited and may not be available at each bus to provide virtual 
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inertial responses due to practical conditions. To mitigate 

frequency stability issues for low-inertia systems, the optimal 

placement of virtual inertia can be recast as a system norm 

minimization problem for a linear system with forementioned 

resources limitations. We consider the linear power system 

model (11) under a disturbance 6� , and the swing equation in 

state-space vector form is as follows: 

]35�5 ^ = _ 0 `−*P�E −*P�/a _3�a + _ 0*P�a 6� 	13� 

where � = 35  and �5 = 34 . The system (13) can also be written in 

standard state-space form: b5 = c ∙ b + e ∙ J 	14� 

    The grid-forming VI devices are power electronic devices that 

mimic the inertial response of synchronous generators. Grid-

forming converter uses a voltage source connected to the grid 

via an LC filter with parasitic losses. Hence the virtual inertia 

device is modeled as:  2fghω5 gh = −+igh�gh − �gh 	15� 

where �gh  is the active power from the grid-forming VI device 

into the grid; 2f gh is the configurable virtual inertia coefficient; 

and  +igh is the virtual damping constant. These two variables are 

constrained by realistic values which ensure the system 

frequency in the normal operating regime. Augmenting the VI 

control to the system, the updated system representation is as 

follows, 

]35�5 ^ = ] 0 `−*j" P�E −*j"P�/j"^ _3�a + ] 0*j"P�^ 6� 	16� 

where *j" = * + *gh  and /j" = / + /gh . In order to model 

the disturbance in the power system, the input 6�  is remodeled 

as 6� = Gklm, where n denotes the disturbance input and G is a 

diagonal matrix describing the disturbance magnitude and 

locations. Therefore, the final state space model is expressed as, 

]35�5 ^ = ] 0 `−*j" P�E −*j" P�/j"^oppppppqppppppr� s
_3�a + t 0*j" P�G��uoppqppr� 

m 	17�
 

    Based on the model presented above, we propose a novel 

performance metric to assess the frequency stability of the grid: 

Fiedler mode weighted coherency index (FMWCI) that 

penalizes angular differences and frequency excursions. The 

proposed performance metric FMWCI is defined in (18), which 

includes a quadratic term of angle differences and a quadratic 

term of frequency displacements. 

v w � bij xθi	t� - θj	t�y2

+ � J�ωi
2

n

i=1

n

i, j=1

(t) z dt
∞

0

	18� 

Here, J� is the absolute value of the Fiedler mode of the network 

Laplacian matrix. The magnitude of RoCoF and frequency 

deviations strongly depend on the Fiedler mode absolute value; 

hence the positive scalars J� are considered as error penalization 

of frequency displacements.  

Adopting the state representation (17), the performance 

metric FMWCI (18) would be equal to the time-integral of the 

performance matrix { that is defined as follow:  

y = }~�
�� 0

0 U1
2

�oppqppr� �
_3�a 	19�

 

The observability Gramian of the system is defined as,  

� = v Os�R ∙ {� ∙ { ∙ OsR+-�
H 	20� 

P is uniquely defined as a solution of the Lyapunov equation 

(21). �c + c�� + {�{ = 0 	21� 

For the state-space system defined above, by solving (21) for 

P, we have the ��-norm computed as follows: 

‖ℊ‖�=WTrace (BTPB� 	22� 

For a given virtual inertia budget *T�%�)R , the objective is to 

find the configuration of VI device control coefficient, which 

minimizes the ��-norm. This problem is summarized as: minimize �        ‖ℊ‖�� = Trace (BTPB� 	23� 

subject to: �c + c�� + {�{ = 0 	23�� 

   2�gh + mi = mi∈ _mi, mi���a , i∈@1,…,nC, 	23;� 

� 2�gh
�∈�

= *T�%�)R , 	23�� 

where mi  is the lower bound of inertia constant at bus i 

accounting for the inertia of dispatched synchronous generators; 

mi��� is the upper bound of inertia constant at bus i accounting for 

both the available virtual inertia and synchronous inertia; 2�ghdenotes the virtual inertia part of distributed nodal inertia. 

Gradient-based methods are used to directly optimize the inertia 

constants of a linearized networked swing equation model to 

minimize the ��-norm of the power system. 

IV.  CASE STUDIES 

The numerical simulations were conducted on the IEEE 24-

bus system [19]. The base system contains 24 buses, 33 

generators and 38 lines. The total generation capacity from 

synchronous generators is 4,606 MW and the system peak load 

is 3,461 MW. 

A.  Validation of VI Devices 

To investigate the impact of VI devices on power system 

frequency stability, two cases are conducted in MATLAB 

Simulink. Initially, the power system is operating in steady state. 

To validate the linearized model, we compare it to the non-linear 

model for step disturbances. The step disturbance is applied on 

23 respectively which is set as -150 MW, or a load increase of 

150 MW.Fig. 3 and Fig. 4 show the frequency evolution of 

synchronous generators in the case without VI devices and in 

the case with VI devices respectively. It is observed that under 

the disturbance on bus 23, without implementation of VI 

devices, the frequency nadir of synchronous generator reaches 

below 59.84 Hz and the highest RoCoF is 0.7 Hz/s. For the same 



  

 

  

disturbance on bus 23, the frequency nadir and RoCoF are 

significantly improved with VI devices by comparing Fig. 3 and 

Fig. 4. The highest frequency deviation is 0.22 Hz in the case 

without VI devices while it is only 0.21 Hz when a VI device 

providing only 100 MWs non-synchronous inertia is included in 

the system. 

 
Fig. 3. Frequency evolution of synchronous generators following a 

disturbance without GFC-based VI devices. 
 

 

 
Fig. 4. Frequency evolution of synchronous generators following a disturbance 

with GFC-based VI devices. 

    Fig. 5 presents the distribution of post-disturbance frequency 

nadirs of all generators for the case without VI devices and the 

case with VI devices installed on bus 23. It can be concluded 

that the mean and variance of the distribution of frequency 

nadirs is smaller for the system equipped with the VI device as 

compared to the system without VI device. Therefore, we can 

conclude that VI devices have the expected positive impact on 

frequency stability. 

 
Fig. 5. Distributions of generator frequency deviation with and without GFC. 

B.  Optimal Placement of VI Devices 

The optimal inertia profile for the system is obtained by 

solving the optimization problem (23). The resulting optimal 

inertia allocation is depicted in Fig. 6. It can be observed that the 

largest allocation of virtual inertia is on bus 7 and virtual inertia 

allocated on bus 23 is much less. This indicates that inertia is 

mostly needed on buses with higher Fiedler mode values to 

enhance system frequency stability, which is in agreement with 

the findings in Section III.  

 
Fig. 6. Optimal inertia allocation for IEEE 24-bus system. 

 

Fig. 7. Frequency responses with and without virtual inertia. 

 

Three cases with different virtual inertia configurations are 

performed following a total step increase of 150MW in load. 

The case with no VI implemented is set as the base case; virtual 

inertia devices are utilized in case 2 while distribution is not 

optimized; same total value of virtual inertia is implemented in 

case 3, and the optimal allocation of virtual inertia is achieved 

by configuring control coefficient of VI devices based on the 

proposed RMHA. As shown in Fig. 7 and Table I, the results of 

no virtual inertia, no optimized virtual inertia and optimal virtual 

inertia allocation are compared. The case with optimal virtual 

inertia allocation reduces the maximal RoCoF from -0.22 Hz/s 

to -0.11 Hz/s comparing to the base case, while the system 

suffers higher RoCoF in the case with no optimized virtual 

inertia allocation. The results also show that the optimized 

virtual inertia improves the average frequency nadir from 59.88 

Hz to 59.92 Hz, while the arresting time is shortened by 0.69s 

(32%) from 2.18s to 1.49s. This is a significant improvement, 

which allows more time for the system to respond. 
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TABLE I Simulation results with and without virtual inertia 

Case 
Average 

RoCoF [Hz/s] 

Frequency 

nadir [Hz] 

Time to 

nadir [s] 

No VI  -0.22 59.87 2.02 

No optimized VI -0.17 59.90 1.26 

Optimized VI  -0.11 59.92 1.37 
 

The power injections from the VI devices are plotted in Fig. 

8. The grid-forming VI devices respond to the disturbance event 

instantaneously, which immediately helps mitigating the initial 

RoCoF and reducing the frequency excursion on the 

synchronous generators. Fig. 8(b) shows the power injection of 

devices with same control coefficient, it can be observed that 

even with the same configured parameters, the power outputs of 

the VI devices vary substantially due to their relative locations 

to the disturbance. This indicates that the devices in different 

regions take distinct actions under the same disturbance. 

 

(a) Time period from t=0 to t=20s. 

 

(b) Time period from t=0 to t=0.25s. 

Fig. 8. Power injections of VI devices with same inertia contribution. 

V.  CONCLUSIONS 

In this paper, we comprehensively examine the dynamics of 

low-inertia power systems with virtual inertia devices. A brief 

investigation into regional frequency responses corresponding 

to the Fiedler modes points out various options to improve 

system inertia response, including virtual inertia control and 

optimal inertia allocation. We implement grid-forming virtual 

inertia devices as frequency dynamic controller to provide extra 

inertia. The RMHA method proposed in this paper optimally 

tune the parameters and the placement of the VI devices by 

incorporating the impact of Fiedler mode.   

The simulation results on the IEEE 24-bus system indicate 

that the implementation of VI devices improve the stability of 

power system frequency responses in terms of frequency nadir 

and maximum RoCoF. Our proposed RMHA method has been 

proved to enhance the frequency dynamics of generator buses.  

Further lines of work on this topic should explore how to include 

probabilistic metrics for the provision of frequency response. 

Allocation and acquirement of virtual inertia can consider more 

economic factors.   
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