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Abstract— Renewable energy sources (RES) has gained significant 
interest in recent years. However, due to favorable weather 
conditions, the RES is installed in remote locations with limited 
transmission capacity. As a result, it can lead to major 
curtailments of the free resource when the network is congested. 
Therefore, energy storage system (ESS) is considered as a viable 
solution to store energy and address the intermittent nature of 
RES though ESS is often distributed and may not be 
geographically close to RES. Therefore, ESS may also suffer from 
the limited transmission capacity due to network congestion.  
Currently, grid operators overlook network flexibility as a 
congestion management tool in day-ahead scheduling. This paper 
addresses these issues and studies the benefits of introducing 
network reconfiguration (NR) as a preventive and corrective 
action for transmission flexibility in day-ahead stochastic security-
constrained unit-commitment (SSCUC-PC) while considering a 
multi-scenario RES output. Simulation results demonstrate that 
NR can lower total system cost, reduce RES curtailments and 
utilize ESS for better impact by alleviating network congestion in 
both base-case and post-contingency networks. 

Index Terms—Preventive network reconfiguration, Corrective 
network reconfiguration, Flexible transmission, Renewable 
energy sources, Energy Storage System, Stochastic programming. 

NOMENCLATURE 

Sets:  

𝑒(𝑛) Set of ESS connected to bus n. 

𝑔(𝑛) Set of generators connected to bus n. 

𝑤(𝑛) Set of RES units connected to bus n. 

𝛿 (𝑛) Set of lines with bus n as receiving bus. 

𝛿 (𝑛) Set of lines with bus n as sending bus. 

Parameters:  

𝑏  Susceptance of line k. 

𝑐  Linear cost for generator g. 

𝑐  No-load cost for generator g. 

𝑐  Start-up cost for generator g. 

𝑑 ,  Predicted demand of bus n in time period t. 

𝐷𝑇  Minimum down time for generator g. 

𝐸𝑆𝑆  Maximum energy capacity of ESS e. 
𝑀 Real number with huge value. 

𝑃  Maximum output limit of generator g. 

𝑃  Minimum output limit of generator g. 

𝑃  Emergency thermal line limit for line k.  

𝑃  Long-term thermal line limit for line k. 

𝑃𝑚𝑎𝑥  Maximum charging power for ESS e. 
𝑃𝑚𝑎𝑥  Maximum discharging power for ESS e. 
𝑃 ,  Maximum capacity of RES w in scenario s. 

𝑅  10-minute outage ramping limit of generator g. 

𝑅  Regular hourly ramping limit of generator g.  

𝑅  Shut-down ramping limit of generator g. 

𝑅  Start-up ramping limit of generator g. 

𝑅𝑚𝑎𝑥  Rate of charging for ESS e. 
𝑅𝑚𝑎𝑥  Rate of discharging for ESS e. 
𝑆𝑂𝐶  Maximum state of charge in percentage of ESS e. 
𝑆𝑂𝐶  Minimum State of charge in percentage of ESS e. 
𝑈𝑇  Minimum up time for generator g. 

𝜋  Probability of RES scenario s. 

Variables:  

𝐸 , , ,  Energy level in ESS e in period t and scenario s 
after outage of line c. 

𝐸 , ,  Energy level in ESS e in period t and scenario s 
𝑃 , , ,  Charge power in ESS e in period t and scenario s 

after outage of line c. 
𝑃 , ,  Charge power in ESS e in period t and scenario s 

𝑃 , , ,  Discharge power in ESS e in period t and scenario 
s after outage of line c. 

𝑃 , ,  Discharge power in ESS in period t and scenario s. 

𝑃 , , ,  Output of generator g in period t and scenario s 
after outage of line c  

𝑃 , ,  Output of generator g in period t and scenario s. 

𝑃 , , ,  Line flow of line k in period t and scenario s after 
outage of line c 

𝑃 , ,  Line flow of line k in period t and scenario s. 

𝑃 , , ,  Output of RES w in period t and scenario s after 
outage of line c. 

𝑃 , ,  RES w output in period t and scenario s.  

𝑟 , ,  Reserve from generator g in period t. 

𝑢 ,  Commitment status of generator g in period t. 

𝑣 ,  Start-up variable of generator g in period t. 

𝑧 , ,  PNR Line status variable of line k in period t. 

𝑧 , , ,  CNR Line status variable of line k after outage of 
line c in period t. 

𝜃 , , ,  Phase angle of bus n in period t and scenario s after 
outage of line c. 

𝜃 , ,  Phase angle of bus m in period t and scenario s. 

𝜃 , , ,  Phase angle of bus n in period t and scenario s after 
outage of line c. 

𝜃 , ,  Phase angle of bus n in period t and scenario s. 

Network Reconfiguration Impact on Renewable 
Energy System and Energy Storage System in 

Day-Ahead Scheduling 



 

 
 

I.  INTRODUCTION 

ue to the increase in investments in renewable energy 
sources (RES) to reduce carbon emissions, which in turn 
requires sophisticated technologies and smarter 

algorithms to utilize the intermittent free resource efficiently. 
Since RES is fed to the grid, it is also paramount to maintain 
the grid reliability. However, since RES is installed in remote 
weather-favorable locations, the transmission congestion can 
cause spillage of free resource [1]. Energy storage systems 
(ESS) has garnered significant attention as a solution to store 
excess RES output [2]. But, ESS can also be less utilized during 
transmission congestion when it is not located near RES. 

To address the above issues, the system flexibility can be 
utilized to avoid transmission congestion [3]-[4] and store 
excess power  for future use [5]. However, the network is still 
predominantly treated as static assets and transmission 
congestions management through network reconfiguration is 
often overlooked. Since network reconfiguration (NR) is a 
cheap and quick action it can lead to significant economic 
benefits through smarter algorithms.  

Presently, NR is overlooked in system scheduling or 
operations. The increase in complexity in introducing NR in 
day-ahead operations through N-1 security-constrained unit 
commitment (SCUC) is a major reason. Thus, operators 
perform such actions based on experience. Since NR is a quick 
action it can implemented in the base-case as a preventive NR 
(PNR) [6]-[8] and post-contingency-scenario as a corrective 
NR (CNR) [9]-[10] with economic benefits and congestion 
management. [11] and [12] show various approaches with 
promising results in computational performance while 
addressing PNR and/or CNR.  

CNR in real-time is implemented through heuristic methods 
in [13]-[15] and by incorporating RES enhancing optimal 
power flow in  [16]-[17]. In day-ahead operations, it is 
incorporated post-contingency constraints in  [11],[18]. 
However, [11] does not consider RES or ESS and [18] does not 
consider ESS. RES is facilitated with preventive resource 
scheduling in [19] and PNR in [20]-[22]. In [22], PNR is 
implemented through a bi-level stochastic implementation to 
solve large scale networks. But, [20]-[22] do not consider ESS. 
High penetration RES introduces huge variability in the system 
and therefore a multi-scenario stochastic approach which 
provides a common commitment is required while maintaining 
reliability [18]-[22]. In [12], both PNR and CNR are considered 
along with energy storage but this model does not include RES 
or address their unpredictability.  

Therefore, the effect of N-1 SCUC with PNR and CNR on 
high penetrative RES network with ESS for RES curtailment 
studies has not been studied. In this paper, we propose a model 
which considers a N-1 Stochastic-SCUC (SSCUC) solution 
integrating a multi-scenario RES such as wind and solar 
supported by ESS while considering PNR and CNR to achieve 
significant system flexibility. The rest of this paper is organized 
as follows. Section II provides an overview of PNR and CNR, 
Section III presents the proposed model. The test case is 
detailed in Section IV while the results are detailed in Section 
V. Section VI summarizes and concludes the paper.  

II.  CORRECTIVE AND PREVENTIVE ACTIONS  

System operators utilize both preventive and corrective 
actions to handle system uncertainties. Mainly, preventive 
actions include ensuring reserve adequacy of generators and 
operating the system below system capacity limits such as de-
rating transmission lines implemented prior contingencies. 
PNR is a preventive action which identifies the optimal base-
case topology to serve the demand. 

A corrective action is implemented after the disturbance has 
occurred. In this case, the system should be able to re-dispatch 
to reach a new operating point and avoid further cascading 
disturbances. CNR is a corrective action implemented after the 
contingency has occurred which can re-route the line flows and 
relieve post-contingency network congestion, which may allow 
cheaper generators to produce more power.  

The concept of CNR is described pictorially in Fig. 1 (a) 
represents the pre-contingency state with no line flow 
violations. Fig. 1 (b) shows the post-contingency state of the 
system. The contingency, line 3 outage, transfers the original 
flow line 3 carries to line 2 and the external path to meet the 
load at bus 4. However, majority of the flow goes through line 
2, which results in an overload on line 4. Traditionally, this 
scenario is countered by ramping the local generators to 
eliminate the line overload. However, this increases the 
operation cost as expensive generation redispatch is required. 
An alternative corrective action is to open line 2 which will 
reroute the entire flow that line 3 carries in the pre-contingency 
situation through the external network to serve the load at bus 4 
as represented in Fig. 1 (c). This action results in the elimination 
of line flow violations without additional cost.  

 

   
(a) (b) (c) 

Fig. 1. Corrective action example: (a) Pre-contingency, (b) Post-contingency 
and (c) Post-switching - CNR action. 

III.  MATHEMATICAL MODEL  

This paper compares four models which considers multiple 
RES scenarios with a known probability distribution while 
performing the day-ahead unit commitment and dispatch 
scheduling considering N-1 reliability: SSCUC, SSCUC with 
PNR (SSCUC-P), SSCUC with CNR (SSCUC-C) and SSCUC 
with both PNR and CNR (SSCUC-PC). The proposed models 
are summarized in Table I. The N-1 system reliability is ensured 
by co-optimizing both the base-case constraints and post-
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contingency constraints to meet the demand while reducing the 
expected operational cost (1).  

 Min: ∑ 𝑐 𝑢 , + 𝑐 𝑣 , + ∑ 𝜋 𝑐 𝑃 , ,,   (1)  

For the base-case, the generator constraints include generator 
physical limits and reserve requirements in (2)-(7) while the 
binary start-up and commitment variables are defined through 
(8)-(10) and the RES output is constrained in (11). The ESS 
charging or discharging status is represented by (12). In 
charging mode, the ESS power absorbed is represented by (13)-
(14). In discharging mode, the ESS power discharged is 
represented by (15)-(16). The ESS state of charge (SOC) limits 
and energy balance are modelled in (17) and (18), respectively. 
The power flow in each line and its limit without PNR is 
modelled in (19)-(20) while with PNR is modelled by the ‘big-
M’ method in (21)- (23). The long-term line flow limits are 
enforced in base-case. PNR is identified by the binary line 
status variable, 𝑧 , . A value of 0 indicates that the line is 
disconnected and a value of 1 represent represents that the line 
is connected to the system. Finally, the nodal balance is ensured 
in (25). To avoid a weak connected grid and reduce system 
disturbance due to PNR, a restriction of at most one line is only 
considered (24). 

 𝑃 𝑢 , ≤ 𝑃 , , , ∀𝑔, 𝑡, 𝑠 (2)  
 𝑃 , , + 𝑟 , , ≤ 𝑃 𝑢 , , ∀𝑔, 𝑡, 𝑠  (3)  

 0 ≤ 𝑟 , , ≤ 𝑅 𝑢 , , ∀𝑔, 𝑡, 𝑠 (4) 

 ∑ 𝑟 , ,∈ ≥ 𝑃 , , + 𝑟 , , , ∀𝑔, 𝑡, 𝑠  (5) 

 𝑃 , , − 𝑃 , , ≤ 𝑅 𝑢 , + 𝑅 𝑣 , , ∀𝑔, 𝑡, 𝑠 (6) 

 𝑃 , , − 𝑃 , , ≤ 𝑅 𝑢 ,

+ 𝑅 𝑣 , − 𝑢 ,

+ 𝑢 .  , ∀𝑔, 𝑡, 𝑠 

(7) 

 ∑ 𝑣 , ≤ 𝑢 , , ∀𝑔, 𝑡 ≥ 𝑈𝑇   (8) 

 ∑ 𝑣 , ≤ 1 − 𝑢 , , ∀𝑔, 𝑡 ≤ 𝑇 − 𝐷𝑇   (9) 

 𝑣 , ≥ 𝑢 , − 𝑢 , , ∀𝑔, 𝑡 (10) 

 0 ≤ 𝑃 , , ≤ 𝑃 , , ∀𝑤, 𝑡, 𝑠 (11) 
 𝑏 , , + 𝑏 , , ≤ 1, ∀𝑒, 𝑡, 𝑠 (12) 
 0 ≤ 𝑃 , , ≤  𝑃𝑚𝑎𝑥 𝑏 , , , ∀𝑒, 𝑡, 𝑠 (13) 

 
−𝑅𝑚𝑎𝑥 ≤ (𝑃 , , − 𝑃 , , )𝛥𝑇

≤ 𝑅𝑚𝑎𝑥 , ∀𝑒, 𝑡, 𝑠 
(14) 

 0 ≤ 𝑃 , , ≤  𝑃𝑚𝑎𝑥 𝑏 , , , ∀𝑒, 𝑡, 𝑠 (15) 

 
−𝑅𝑚𝑎𝑥 ≤ (𝑃 , , − 𝑃 , , )𝛥𝑇

≤ 𝑅𝑚𝑎𝑥 , ∀𝑒, 𝑡, 𝑠 
(16) 

 
𝑆𝑂𝐶 𝐸𝑆𝑆 ≤ 𝐸 , ,

≤ 𝑆𝑂𝐶 𝐸𝑆𝑆 , ∀𝑒, 𝑡, 𝑠  
(17) 

 𝐸 , , = 𝐸 , , + 𝜂 𝑃 , , −
𝑃 , ,

𝜂
, ∀𝑒, 𝑡, 𝑠 (18) 

 𝑃 , , − 𝑏 𝜃 , , − 𝜃 , , = 0, ∀𝑘, 𝑡, 𝑠 (19) 
 −𝑃 ≤  𝑃 , , ≤ 𝑃 , ∀𝑘, 𝑡, 𝑠 (20) 
 𝑃 , , − 𝑏 𝜃 , , − 𝜃 , , + 1 − 𝑧 , , 𝑀

≥ 0, ∀𝑘, 𝑡, 𝑠 
(21) 

 𝑃 , , − 𝑏 𝜃 , , − 𝜃 , , − 1 − 𝑧 , , 𝑀 

≤ 0, ∀𝑘, 𝑡, 𝑠 
(22) 

 −𝑧 , , 𝑃 ≤  𝑃 , , ≤ 𝑧 , , 𝑃 , ∀𝑘, 𝑡, 𝑠 (23) 
 ∑ (1 − 𝑧 , , ) ≤ 1, ∀𝑘, 𝑡, 𝑠    (24) 
 ∑ 𝑃 , ,∈ ( ) + ∑ 𝑃 , ,∈ ( ) − ∑ 𝑃 , ,∈ ( ) =

𝑑 , − ∑ 𝑃 , ,∈ ( ) + ∑ (𝑃 , , −∈ ( )

𝑃 , , ) , ∀𝑛, 𝑡, 𝑠  
(25) 

For the N-1 reliability based post-contingency constraints 
after the outage of line c which details; the contingent generator 
output, 10-minute physical limits and RES limit are defined in 
(26)-(30). Similar to the base-case, the post-contingency ESS 
charging or discharging output, SOC limits and energy balance 
are represented in (31)-(36), respectively. The power flow in 
each line and its limit without CNR is modelled in (37)-(38) 
while with CNR is modelled by the ‘big-M’ method in (39)-
(41). The emergency line flow limits are enforced in contingent 
scenario. PNR is identified by the binary line status variable, 
𝑧 , . A value of 0 indicates that the line is disconnected and a 
value of 1 represent represents that the line is connected to the 
system. If PNR is not implemented the value of 1 is fixed for 
all lines. To avoid a weak connected grid and reduce system 
disturbance due to CNR, a restriction of at most one line is only 
considered for reconfiguration (42).Finally, the nodal balance 
is adhered in post-contingency case in (43).  

 𝑃 , , − 𝑃 , , , ≤ 𝑅 𝑢 , , ∀𝑔, 𝑐, 𝑡, 𝑠 (26) 
 𝑃 , , , − 𝑃 , , ≤ 𝑅 𝑢 , , ∀𝑔, 𝑐, 𝑡, 𝑠 (27) 
 𝑃 𝑢 , ≤ 𝑃 , , , , ∀𝑔, 𝑐, 𝑡, 𝑠 (28) 
 𝑃 , , , ≤ 𝑃 𝑢 , , ∀𝑔, 𝑐, 𝑡, 𝑠 (29) 
 0 ≤ 𝑃 , , , ≤ 𝑃 , , ∀𝑤, 𝑡, 𝑠 (30) 
 0 ≤ 𝑃 , , , ≤  𝑃𝑚𝑎𝑥 𝑏 , , , ∀𝑒, 𝑐, 𝑡, 𝑠 (31) 
 −𝑅𝑚𝑎𝑥 ≤ 𝑃 , , , − 𝑃 , , 𝛥𝑇

≤ 𝑅𝑚𝑎𝑥 , ∀𝑒, 𝑐, 𝑡, 𝑠 
(32) 

 0 ≤ 𝑃 , , , ≤  𝑃𝑚𝑎𝑥 𝑏 , , , ∀𝑒, 𝑐, 𝑡, 𝑠 (33) 
 −𝑅𝑚𝑎𝑥 ≤ 𝑃 , , , − 𝑃 , , 𝛥𝑇

≤ 𝑅𝑚𝑎𝑥 , ∀𝑒, 𝑐, 𝑡, 𝑠 
(34) 

 𝑆𝑂𝐶 𝐸𝑆𝑆 ≤ 𝐸 , , ,

≤ 𝑆𝑂𝐶 𝐸𝑆𝑆 , ∀𝑒, 𝑡, 𝑠  
(35) 

 
𝐸 , , , = 𝐸 , , + 𝜂 𝑃 , , , −

𝑃 , , ,

𝜂
, ∀𝑒, 𝑐, 𝑡, 𝑠 (36) 

 𝑃 , , , − 𝑏 𝜃 , , , − 𝜃 , , , = 0, ∀𝑘, 𝑐, 𝑡, 𝑠 (37) 
 −𝑃  ≤  𝑃 , , , ≤ 𝑃 , ∀𝑘, 𝑐, 𝑡, 𝑠 (38) 
 𝑃 , , , − 𝑏 𝜃 , , , − 𝜃 , , , + 1 − 𝑧 , ,, , 𝑀

≥ 0, ∀𝑘, 𝑐, 𝑡, 𝑠 
(39) 

 𝑃 , , , − 𝑏 𝜃 , , , − 𝜃 , , , − 1 − 𝑧 , , , 𝑀 

≤ 0, ∀𝑘, 𝑐, 𝑡, 𝑠  
(40) 

 −𝑃 𝑧 , , ,  ≤  𝑃 , , , ≤ 𝑧 , , , 𝑃 , ∀𝑘, 𝑐, 𝑡, 𝑠 (41) 
 ∑ (1 − 𝑧 , , , ) ≤ 1, ∀𝑘, 𝑐, 𝑡, 𝑠    (42) 
 ∑ 𝑃 , , ,∈ ( ) + ∑ 𝑃 , , ,∈ ( ) −

∑ 𝑃 , , ,∈ ( ) = 𝑑 , − ∑ 𝑃 , , ,∈ ( ) +

 ∑ (𝑃 , , , − 𝑃 , , , )∈ ( ) , ∀𝑛, 𝑐, 𝑡, 𝑠  
(43) 

TABLE I. PROPOSED MODELS  
Model Base-Case Constraints N-1 Constraints 

SSCUC (1)-(20), (25) (26)-(38), (43) 
SSCUC-P (1)-(18), (21)-(25) (26)-(38), (43) 
SSCUC-C (1)-(20), (25) (26)-(36), (39)-(43) 
SSCUC-PC (1)-(18), (21)-(25) (26)-(36), (39)-(43) 

In this work, we identify the congestion alleviation offered 
by prevalent transmission flexibility through PNR and CNR for 
system congestion. On the contrary, generator outages are rare 
compared to transmission outages and hence,  not considered in 
the proposed models. It can also be noted that constraints (8)-
(10) are not scenario based since the commitment schedule of 
generators are the same across all scenarios, ∀𝑠. 



 

 
 

IV.  TEST CASE: IEEE 24-BUS SYSTEM WITH RES 

The IEEE 24-bus system [23] was utilized for testing the  
proposed models.  The test system consists of 33 generators  and 
38 branches. Modifications introduced in the system are the 
addition of multi-scenario RES at bus 16, and bus 21 while ESS  
were installed at bus 14 and bus 23. The total available 
traditional generation capacity is 3,393 MW and the system 
peak load is 2,270 MW. 

The ESS parameters are present in Table II. Four scenarios 
were considered for the RES with an average system 
penetration of 48% is considered with equal probability 
distribution and is presented in Fig. 2. The RES output is 
assumed to be constant for four-hour-blocks.  

TABLE II. ESS DATA 
Parameter Value 

Max Charging/Discharging capacity (MW) 220 
Max rate of charging/discharging (MW/h) 100 
SOC min/max 20%/90% 
Charging/discharging efficiency  0.9 
Max Energy (MWh) 250 

  
Fig. 2. The total RES capacity for each scenario. 

V.  RESULTS AND ANALYSIS 

The mathematical model is implemented using AMPL, [24], 
and solved using Gurobi, [25], with a MIPGAP of 0.01 for a 24-
hour (day-ahead) load period. The computer with Intel® 
Xeon(R) W-2195 CPU @ 2.30GHz, and 128 GB of RAM was 
utilized.  

A.  Total Cost Studies: 

Table III presents the results for proposed models for total 
expected cost in $, solve time in seconds and average RES 
curtailed per scenario in MW. The benchmark results for 
SSCUC presents that the total expected cost (averaged over four 
scenarios) is $161,340 and it leads to an average RES 
curtailment over four scenarios of 208 MW.  

The transmission flexibility through PNR and/or CNR results 
in significant economic benefits over SSCUC. Mainly, SSCUC-
P and SSCUC-C which implements only PNR and only CNR  
respectively, results in alleviation of congestion cost of $ 6,505 
and $ 2,940 over SSCUC. This implies that PNR, implemented 
in base-case, can provide more flexibility benefits to the system 
than CNR, implemented in post-contingency case. The 
combination of PNR and CNR leads to further saving in 
SSCUC-PC since this provides additional transmission 

flexibility in both base-case and post-contingency case at $ 
13,109 over SSCUC due to the increase in total feasibility 
region. The RES curtailment is the highest in SSCUC due to the 
similar reason and is bettered in models which implement PNR 
and/or CNR. A decrease in curtailment of free RES output of 
139.75 MW and 35.75 MW is noticed per scenario for SSCUC-
P and SSCUC-C. Again, SSCUC-PC provides the maximum 
decrease in curtailment of free RES output of about 162.5 MW 
per scenario.  

The computation complexity of the problem increases due 
the binary variables introduced by PNR or CNR with CNR 
resulting in higher computational burden than PNR. This is 
evident from SSCUC-PC, though leads to the best solution, the 
solver results in timeout solution with higher MIPGAP of 0.02.  

TABLE III. COST STUDIES FOR SSCUC 
MIPGAP=0.01 SSCUC SSCUC-P SSCUC-C SSCUC-PC 
Total Cost ($) 161,340 154,835 158,400 148,231 
Solve time (s) 82.09 260.36 561.67 2500 (Timeout) 
Avg. RES  
Curtailed (MW) 

208 68.25 172.25 45.5 

B.  ESS benefits:  

In this section, we study the ESS usage in the proposed 
models. From Fig. 3, we notice a similar pattern that alleviation 
of congestion enables SSCUC-PC to utilize the ESS systems 
charge more in low demand (periods 1-8) than other models and 
whereas only SSCUC-C provides higher discharge capability 
than SSCUC-PC in peak demand (periods 9-17). This is 
because SSCUC-PC significantly reduces RES curtailment 
which directly implies more RES power is utilized by the 
system and hence this excess power in the initial periods is 
stored for future use.  

SSCUC-P shows the flattest trend which implies that the 
battery goes through smaller cycles. Therefore, PNR enables 
the ESS by decreasing the depth of discharge in batteries in the 
long run. This in turn can lead to long term benefits for ESS 
longevity before replacement.  

 
Fig. 3. Total Cost in $ under various penetration levels. 

C.  Preventive and Corrective action strategy: 

One of the key aspects CNR is that not all contingencies lead 
to system congestion. Predominantly, line 31 [bus 17 – bus 22] 
and line 38 [bus 21- bus 22] are viable candidates for CNR. In 
both PNR and CNR, the reconfiguration action is preferred in 
high voltage side of the system. This is because the bottleneck 
line is line 23 [bus 14 – bus 16].  
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PNR is considered more favorable since it is implemented in 
over 98% of time period in each scenario. Since the network is 
a mesh network, there are redundancy in the network and a 
single topology is not optimal for serving the demand. For PNR, 
reconfiguring line 14 [bus 9 - bus 11] and line 19 [bus 11 - bus 
14] which links the high voltage and low voltage side yields the 
best topology to serve the demand.   

It is evident that only a few key reconfiguration actions are 
critical in addressing the transmission flexibility. CNR action 
are closer to generation buses which enable committed cheaper 
generators to ramp up or ESS to discharge during low RES 
penetration period.  Whereas PNR actions identify the optimal 
network topology to serve the load is ideally performed on key 
lines closer to the low voltage side or loads of the network.  

VI.  CONCLUSIONS 

The growth in popularity of RES to address climate change 
as a carbon free resource is affected by the intermittent nature 
of RES. To address the imbalances, other technologies like ESS 
are required to store electrical energy. However, the network 
congestion can still lead to RES curtailment and inefficient use 
of ESS. A smarter grid is required which utilizes a dynamic 
network to alleviate transmission congestion in both pre-
contingency cases through PNR and post-contingency cases 
through CNR to integrate the above resources. Hence, we 
proposed a SSCUC-PC which implements both PNR and CNR 
in this paper.  

The cost studies demonstrate remarkable cost saving by 
reducing network congestion and utilizing additional free RES 
output by utilizing existing flexibility in transmission network. 
The ESS studies reveal that SSCUC-PC and SSCUC-C enable 
ESS to produce more power during peak periods whereas 
SSCUC-P ensure the longevity of storage devices by reducing 
the depth of discharge in each cycle in day-ahead operations.  

Numerical results also exhibit that only a few reconfiguration 
strategies are key to addressing system congestion which can 
be considered in the future work for scalability of proposed 
model to large power systems. 

The future work to be considered includes the scalability of 
this model for large power system networks. It is known that 
the addition of PNR and CNR along with the consideration of 
multi-scenario based stochastic implementation leads to 
increased solution complexity which can be addressed by 
decomposing the problem as a master-slave problem and 
iteratively solved to reduce the computational burden on large 
MILP problem. The effect of battery operational cost in ESS 
longevity is another topic under consideration for future work.  
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