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Abstract: Though the full AC power flow model can accurately represent the physical power system,
the use of this model is limited in practice due to the computational complexity associated with
its non-linear and non-convexity characteristics. For instance, the AC power flow model is not
incorporated in the unit commitment model for practical power systems. Instead, an alternative
linearized DC power flow model is widely used in today’s power system operational and planning
tools. However, DC power flow model will be useless when reactive power and voltage magnitude are
of concern. Therefore, a linearized AC (LAC) power flow model is needed to address this issue. This
paper first introduces a traditional LAC model and then proposes an enhanced data-driven linearized
AC (DLAC) model using the regression analysis technique. Numerical simulations conducted on
the Tennessee Valley Authority (TVA) system demonstrate the performance and effectiveness of the
proposed DLAC model.
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1. Introduction

The power system is one of the most complicated physical networks in the world. Almost
all electricity demands are served through power systems. It is of utmost importance to study the
fundamentals of power systems including power flow analysis. Power flow model is involved
in a great number of problems and is incorporated in various application models. For instance,
it is incorporated into the formulations of state estimation [1,2], security-constrained economic
dispatch [3–5], security-constrained unit commitment [6,7], transmission maintenance scheduling [8],
and transmission expansion planning [9–12]. Hence, power flow analysis is remarkably important for
power system planning as well as power system operations. Currently, the two most popular power
flow models are the full AC model and the linearized DC model.

The full AC power flow model, following Kirchhoff’s circuit laws and Ohm’s law, can accurately
represent the physical power system. This model captures all electric variables of interest, including
active power, reactive power, phase angle and voltage magnitude. However, it is not uncommon to
observe the divergence of AC power flow problems even with commercial software such as PSS/E and
DSATools. In addition, incorporating AC power flow model into an optimization model will make it
impossible to solve.

Though a number of algorithms were proposed in literature to improve the convergence
performance of the AC power flow model [13,14], it still remains to be an unresolved issue.
The computational complexity due to its non-linearity and non-convexity makes it impossible to use
the AC power flow model in a variety of optimization problems. For instance, though the classical
formulation for AC model based economic dispatch was first created by Carpentier in 1962 [15], no
robust and reliable algorithm has been developed since then to solve the problem in a timely manner
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due to its non-linearity, non-convexity, and large-scale features. As a result, the industry today still
uses a linearized DC power flow model that ignores reactive power and voltage magnitude.

To relieve computational burden, the simplified traditional DC power flow model is adopted when
only active power and phase angle are of concern. As the DC model is simple, efficient, and reliable,
it is widely used in the power industry and many power system applications [16–20]. For instance,
instead of the AC model, the DC model is employed in the day-ahead energy markets and real-time
energy markets.

The DC model is a good approximation of the AC model in terms of active power solution
for high voltage transmission networks, of which the X/R ratios are typically very high. However,
DC power flow may fail to perform properly in some scenarios. For instance, the work in [21] shows
that DC model based cascading failure simulators fail to capture the power system behaviors in several
circumstances. Though the average error for active power is limited to 5%, significant errors are still
observed on several individual lines [22]. Three DC power flow models are investigated in [23]. It is
concluded that the α-matching model has the most accurate results. However, α-matching method is
hot-start, and thus its utilization is only restricted to near-real-time applications with the knowledge of
initial system status. Furthermore, DC model cannot be utilized in the cases that voltage magnitude
and reactive power are of interest.

Though the full AC power flow model is accurate, its computational complexity and unstable
characteristics restrict its utilization. DC power flow model can reduce the computational burden
significantly, but it may suffer from an inaccuracy issue and report no information regarding reactive
power and voltage magnitude. Therefore, for situations when the reactive power and voltage
information are needed while the solution time is limited, a fast linearized AC (LAC) power flow
model that can capture reactive power and voltage magnitude is desired.

Three linear-programming AC power flow models, derived with polyhedral relaxation and Taylor
series, are proposed in [24]. Numerical simulation demonstrates the effectiveness of the proposed
models. Another linear approximation of the AC model is presented in [25]. The error of this
approximation is less than 6% for voltage magnitude. It is worth noting that the approximation error
of the proposed model in this paper is only about 1%. A linear relaxation of AC power flow model
using polynomial optimization is proposed in [26]. The linearized model is applied to transmission
planning problem, and the case studies demonstrate its capability of obtaining approximate solutions
in a reasonable time. However, the solution is not checked and compared with the accurate full AC
model. An iterative linear power flow method proposed in [27] seems to be accurate and fast. However,
this iterative method may fail to converge. All the above work [24–27] is demonstrated on small-scale
standard test cases only, and further efforts are needed to investigate the model accuracy on large-scale
practical power systems.

To solve the scalability and accuracy issues related to AC power flow linearization, a data-driven
linearized AC (DLAC) power flow model is proposed in this paper. This model captures all system
state variables including active power, phase angle, reactive power and voltage magnitude. First,
a regular linearization of full AC power flow model is conducted by ignoring higher order terms. Then,
coefficients are assigned to the terms that remain in the model. The regression analysis technique
is performed to determine those coefficients, which can reflect the system’s typical or recent status.
The philosophy behind this idea is that the system condition does not change significantly in a short
timeframe such as a day. For instance, generator voltage setting points typically do not change or
change within very narrow ranges, which indicates that voltage magnitude for other neighboring
buses would also not change significantly. Another noticeable fact is that the voltage magnitudes for
high voltage transmission networks are typically higher than one per unit.

The proposed enhanced DLAC power flow model can (i) substantially reduce the error associated
with active power flows as compared with the traditional DC power flow model; (ii) and obtain much
more accurate voltage profile and significantly improve reactive power flow solutions as compared with
the traditional linearized AC model. In addition, the proposed DLAC model can be easily incorporated
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in various power system applications such as day-ahead unit commitment or real-time economic
dispatch, which can substantially improve their performance. The effectiveness of the proposed DLAC
model is demonstrated with a practical U.S. power system.

The rest of this paper is organized as follows. Section 2 presents an overview on the power flow
model. Section 3 introduces the regression analysis technique. Section 4 discusses the regular LAC
model and the proposed enhanced DLAC model. Case studies are presented in Section 5. Finally,
Section 6 concludes the paper.

2. AC Power Flow Model

Power flow studies are the basis of power system analysis [28]. The per unit system and single-line
diagram are usually used for simplification. In the power flow studies, the following assumptions are
typically made:

• The system is three-phase balanced and thus, only the positive sequence network is of concern.
• The Pi-equivalent circuit model can accurately represent the transmission network.
• Individual generation and load are known except for the generation at the slack bus.

Given these assumptions, the following state variables can be obtained by solving an AC power
flow problem through computer programs:

• voltage magnitude and phase angle at each bus,
• active power and reactive power generations at each bus,
• active power flow and reactive power flow in both directions on each branch,
• loss on each branch.

Figure 1 shows the single-line diagram of a two-terminal circuit. A power system network consists
of a number of those 2-terminal circuits. Note that P denotes active power while Q stands for reactive
power. Normally, the power flowing out of one end-bus does not equal to the power flowing into the
other bus because of (i) the reactive power produced by transmission lines, and (ii) the losses on the
branch connected to the two end buses, which means that Pi j , −P ji and Qi j , −Q ji.
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Figure 1. Single-line diagram of a 2-terminal circuit.

The power flow equations for a branch are given below.

Pi j = V2
i gi j −ViV j

(
gi jcosθi j + bi jsinθi j

)
(1)

Qi j = −V2
i

(
bi j +

bpi

2

)
+ ViV j

(
bi jcosθi j − gi jsinθi j

)
(2)

where Pi j and Qi j denote the active power and reactive power on branch k flowing from bus i to
bus j respectively, θi j denotes the phase angle difference across this branch, while Vi and V j are the
voltage magnitude of bus i and bus j, respectively. yi j and bpi denote the series admittance and parallel
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susceptance of Pi-equivalent circuit respectively. gi j and bi j are the real part and imaginary part of yi j
respectively, and they can be calculated with the following equation,

yi j = gi j + jbi j =
1
zi j

=
1

ri j + jxi j
=

ri j − jxi j

r2
i j + x2

i j

(3)

where zi j, ri j, and xi j denote line impedance, resistance and reactance of the Pi-equivalent circuit
respectively.

Other important equations for the power flow studies are the nodal power balance constraints as
shown in Equations (4) and (5).

Pig − Pid −
∑

h∈Si+

Pih +
∑

h∈Si−

Phi = 0 (4)

Qig −Qid −
∑

h∈Si+

Qih +
∑

h∈Si−

Qhi = 0 (5)

where Si+ denotes the set of buses that are directly connected to bus i when bus i is designated as
the sending end, and Si− denotes the set of buses that are directly connected to bus i when bus i is
designated as the receiving end. Pig and Qig represent the total active power and total reactive power
produced by the generators at bus i, respectively, Pid and Qid are the total active power load and total
reactive power load at bus i respectively. Pih and Qih denote the branch active power and reactive
power flowing from bus i to bus h respectively.

3. Regression Analysis

Regression analysis is a widely used statistical technique for estimating the relationships among
variables and determining the model for those variables [29,30]. It typically involves a dependent
variable that is also referred to as a response variable, and one or multiple independent variables that
are often called as regressors or predictors. The most popular method is the least squares approximation.
A general multiple linear regression model with k regressors is defined as follows:

y = β0 +
k∑

j=1

β jx j + ε (6)

where x j is the jth regressor, β denotes the coefficient, and ε denotes the error.
Provided a sample set of n observations, all parameters β j can be determined as β̂ j through

regression analysis. The estimated value ŷi and residual ei for the ith observation in the sample space
are defined as Equations (7) and (8) respectively.

ŷi = β̂0 +
k∑

j=1

β̂ jxi j (7)

ei = yi − ŷi (8)

where yi is the observed value of the ith observation. Residual e denotes the difference between the
observed value and the estimated or fitted value while error ε represents the discrepancy between the
observed value and the true value.

After creating a regression model, it is important to (i) conduct model adequacy checking to
ensure the model fits the data and (ii) perform model validation to demonstrate the effectiveness of the
regression model.
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3.1. Model Adequacy Checking

One statistical metric to evaluate the overall model adequacy is the Coefficient of Determination,
which is a percentage number denoted as R2. R2 quantifies how good the regression model is and how
much variation can be explained with the regression model. In other words, R2 is the proportion of
variation in the response variable explained and predicted by the regressors. 100% indicates that the
regression model explains all the variability around the mean. R2 is defined in the equation below,

R2 = 1−
SSres

SStotal
(9)

where SSres denotes the residual sum of squares and SStotal denotes the total sum of squares.
Residual analysis can effectively discover several types of model inadequacies and measure how

good the regression model fits the data [30]. Scaled residuals such as standardized residuals may be a
better analysis technique to find outliers and analyze the regression model. The standardized residuals
with zero mean and approximately unit variance is defined in the equation below,

di = ei/
√

MSRes (10)

where MSRes is the residual mean square that estimates the average variance of residuals.
Another commonly used scaled residual is the R-student residual, defined in Equation (11) shown

below. R-student residuals are often used since their variance is constant.

ti = ei/
√

S2
(i)
(1− hii) (11)

where hii is an element of the hat matrix and S2
(i) denotes the estimate of variance with the ith observation

being moved from the dataset.
A plot of the residuals against the fitted values can help detect several types of model inadequacy.

If the residuals in the plot are contained in a horizontal band, then, there is no indication of model
deficiency. If the residuals against fitted values form a pattern such as a funnel, double bow, or
nonlinear, then it indicates that defects may exist in the regression model and further investigation
is required.

3.2. Model Validation

In the regression analysis domain, the best fitted model to the sample dataset may not accurately
describe the relationship between variables. One key concern is the danger of extrapolation. Though a
regression model is often used for extrapolation, it does not apply to the power flow analysis since
the power system status does not change significantly especially in a short time frame. The case
studies section in this paper demonstrate that the proposed regression model for linearized power
flow equations has very similar performance in different system scenarios.

Multicollinearity may occur when regressors are highly linearly dependent and it has serious
negative effects on the regression model. The regression coefficients may be poorly estimated when
multicollinearity exists, which may result in inaccuracy of the regression model. One popular technique
to detect multicollinearity is variance inflation factor (VIF). VIF measures how much variance of the
estimated regressor coefficient is inflated. Each regressor in the regression model corresponds to one
VIF value. This will be very useful to determine whether that regressor is involved in multicollinearity.
High VIF indicates the associated regressor may have poor coefficient. VIFs below 3 suggests
multicollinearity does not exist [31]. A VIF of one means there is no correlation between the associated
regressor and the other regressors.
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4. Data-Driven Linearized Power Flow Model

The regression analysis technique is often used for determining the causal effect relationship
between the variables. With a power engineering insight, this work uses regression analysis technique
to improve the simplified model derived from linearization of the complex full AC power flow model.
This section first presents the traditional DC model and regular linearized AC model. Then, it describes
the proposed data-driven DC (DDC) model and the proposed data-driven linearized AC model that
can capture recent or historical system status with regression analysis.

4.1. DC Power Flow Model

The most commonly used linearized power flow model is the DC power flow model represented
by the equation shown below. This DC power flow model can be used for applications when voltage
magnitude and reactive power are not of concern. Due to its linearity and low computational burden,
the DC power flow model is widely used in academic studies, as well as industry practices.

Pi j = θi j/xi j (12)

4.2. Linearized AC Power Flow Model

Though DC power flow model has been widely used for dozens of years, it does not apply for the
scenarios when voltage and reactive power are of concern. Therefore, a linearized AC power flow
model can be very useful. The nodal voltage magnitude can be written as follows [32],

Vi = 1 + ∆Vi (13)

where ∆Vi is supposed to be very small since nodal voltage is very close to one in normal situations.
Substituting Equation (13) into Equations (1) and (2) and ignoring the second order terms including
∆Viθi j and ∆V jθi j, we can obtain:

Pi j = −θi jbi j +
(
∆Vi − ∆V j

)
gi j (14)

Qi j = −(1 + 2∆Vi)bpi − θi jgi j −
(
∆Vi − ∆V j

)
bi j (15)

Then, substituting ∆Vi = Vi − 1, derived from Equation (13), back into Equations (14) and (15),
we will obtain the linearized AC power flow equations shown below.

Pi j = −θi jbi j +
(
Vi −V j

)
gi j (16)

Qi j = bpi − 2Vibpi − θi jgi j −
(
Vi −V j

)
bi j (17)

4.3. Data-Driven Linearized DC and AC Power Flow Models

In the simplification of the DC power flow model represented by Equation (12), voltage magnitude
is assumed to be one per unit all over the entire system, which is one of the main sources why DC
power flow model is not very accurate. It would be very useful if a more accurate model with similar
computational complexity is available. Thus, this paper presents a data-driven DC power flow model
that uses the regression analysis technique to capture the system specific condition and reflect it with
different coefficients in the model. Thus, as shown in Equation (18), instead of having the proportional
coefficient being one, we can adjust it and optimize it based on the system recent and historical status.

Pi j = KDθi j/xi j (18)
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Similarly, adjustments to the LAC model can be made to improve the model by incorporating the
system recent and/or historical status. The data-driven LAC model with coefficients associating to
each term is shown below. Model Equation (19) represents regression model P while Equation (20)
denotes regression model Q. The constant term in Equation (20) is the intercept of the regression model
Q. As compared to the regular LAC model described in Section 4.2, the proposed DLAC model has
better performance and smaller model error.

Pi j = −KA1θi jbi j + KA2
(
Vi −V j

)
gi j (19)

Qi j = bpi − 2KA3Vibpi −KA4θi jgi j −KA5
(
Vi −V j

)
bi j (20)

The proposed DDC and DLAC models have several advantages over other regression models.
Unlike [33,34], the numbers of regressors in the proposed regression models Equations (18)–(20) do
not increase with the size of the system, which enables the proposed DDC and DLAC models to be
computationally efficient. As compared with the regular LAC model Equations (16)–(17), the proposed
DLAC model Equations (19)–(20) shares very similar computational complexity since they have the
same number of linear algebra equations. The addition of coefficients does not create substantial
computational complexity. In addition, the proposed regression models are derived from the physical
model and the regressors are not correlated. For instance, for the proposed regression model Q, each
data entry includes the voltage magnitude of only one end bus of a line rather than two end buses of
a line, which avoids potential correlation across regressors. To summarize, the proposed DDC and
DLAC models have neither scalability nor collinearity issues.

4.4. Metrics

The approximation error of the simplified power flow heuristic model is defined in
Equation (21) below,

εm =
1

Nm

Nm∑
i=1

∣∣∣∣∣∣∣x
i
m − xi

AC

xi
AC

∣∣∣∣∣∣∣ ∗ 100% (21)

where xm denotes the state variable for a simplified power flow model m while xAC denotes the same
state variable obtained with the full AC model. i indicates the ith element while Nm denotes the number
of elements in xm or xAC.

To quantify how much the proposed data-driven model improves the solution accuracy against
the traditional model, a model improvement index, a percentage number, is defined in Equation (22).

ηb,a =
εa − εb
εa

∗ 100% (22)

In addition to analyzing the model improvement index, the sum and the average of absolute
deviations across all buses of interest or all branches of interest are important indicators on the
performance of heuristic models. The sum of absolute deviation for model m is defined in Equation (23)
while the average of absolute deviations is defined in Equation (24).

sm =

Nm∑
i=1

∣∣∣xi
m − xi

AC

∣∣∣ (23)

γm =
1

Nm

Nm∑
i=1

∣∣∣xi
m − xi

AC

∣∣∣ (24)
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5. Case Studies

The proposed data-driven DC model and data-driven linearized AC model are tested against the
practical Tennessee Valley Authority (TVA) system and compared with the traditional full AC power
flow model and simplified DC power flow model. TVA is a U.S. federally owned corporation that
covers a population of about 10 million people [35].

This system has 1779 buses and 2301 branches. There are 72 consecutive hourly cases that covers
3 days’ scenarios [36]; they are used as the test cases in this work. They are referred to as hour 1 case,
hour 2 case, . . . , and hour 72 case in this paper. AC power flow simulation is conducted on hour 1 case
to obtain the system status that is used as the training data for regression analysis: the data used for
determining the coefficient for data-driven DC model are line reactance, line active power flow and
phase angle difference across the line; the data used for determining the coefficients for data-driven
linearized AC model include line reactance and susceptance, line active power flow and reactive power
flow, phase angle difference across the line, and voltage magnitudes at two end buses. The other cases
are used to validate the proposed models. In this work, R is used as the statistical tool to perform
regression analysis [37].

5.1. Data-Driven DC Model

With the power flow results obtained from the full AC power flow simulation on hour 1 case,
regression analysis determines the coefficient KD in Equation (18) to be 1.12, which is above one unit.
This is consistent with the fact that the average voltage magnitude for the same hour 1 case is 1.04
which is also above one unit.

The coefficient of determination for this regression model is 0.9964. This indicates that the
regression model, Pi j = 1.12θi j/xi j, can explain 99.64% of the variation of the response variable Pi j.
VIF does not apply to regression model with one single regressor. Thus, the DDC model won’t have
any multicollinearity or overfitting issues as it has only one single regressor.

Figure 2 shows the plots of different types of residuals against the fitted values of branch active
power flows for the hour 1 case. The residuals in Figure 2a–c correspond to the original residuals,
standardized residuals, and R-student residuals, respectively. Note that the residual scale for Figure 2b,c
is about 10 times larger than Figure 2a since Figure 2b,c show scaled residuals while Figure 2a does not.
In Figure 2a, majority of the original residuals reside within the range of [−0.2, 0.2] and very few of
them goes beyond the boundary of [−0.5, 0.5]. This indicates the errors of the regression model are
within an acceptance range. Similarly, Figure 2b,c show that the residuals are mostly located within
3 units of the standard deviation. In conclusion, Figure 2 illustrates the effectiveness of the DDC power
flow model.

Note that KDθi j in Equation (18) is mathematically equivalent to θi j in Equation (12); in other
words, the proposed DDC model will achieve the same Pi j while it can improve the solution for θi j.
The power flow solutions obtained from the DC model and the DDC model for the TVA system
condition represented by hour 1 case are presented in Table 1. The branch active power P calculated
from both models are the same while the improvement on θi j is significant. The improvement for
branches with flows of over 50 MW is more than 50% on average. As shown in Table 2, very similar
results are observed for hour 2 case, which represents a different scenario with the one used to train
the DDC model. This further demonstrates that the proposed DDC model can substantially improve
θi j as compared to the traditional DC model.
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Figure 2. Plots of residuals against fitted values of branch power for hour 1 case: (a) Original residual
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Table 1. Results with DDC and DC Models for Hour 1 Case.

Tolerance in MW for Pij

1 5 10 50

# of branches 2093 1973 1746 841

Pi j
εDC 8.75% 6.59% 5.45% 3.66%
εDDC 8.75% 6.59% 5.45% 3.66%

θi j
εDC 22.1% 17.4% 13.4% 11.2%
εDDC 16.9% 12.6% 8.4% 5.2%

ηDDC,DC 23.6% 27.8% 37.0% 53.2%

Table 2. Results with DDC and DC Models for Hour 2 Case.

Tolerance in MW for Pij

1 5 10 50

# of branches 2082 1954 1722 815

Pi j
εDC 6.96% 5.00% 4.28% 2.94%
εDDC 6.96% 5.00% 4.28% 2.94%

θi j
εDC 18.0% 15.6% 11.2% 10.0%
εDDC 13.8% 11.6% 7.18% 5.20%

ηDDC,DC 22.9% 26.0% 36.0% 48.2%

5.2. Data-Driven Linearized AC Model

In the DLAC model, two separate regression models are built for branch active power and reactive
power respectively. The results of coefficients are presented in Table 3. All five coefficients deviate
from the value of one that is used for the regular LAC model. The 95% confidence interval for each
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regression coefficient is very narrow, which indicates that the coefficients are very stable and accurate
for the given dataset or system conditions.

Table 3. Coefficients of the Regression Models.

Coefficient KA1 KA2 KA3 KA4 KA5

Estimate 1.12 0.98 0.87 1.02 1.01

95% CI
2.5% 1.12 0.93 0.85 1.01 1.00
97.5% 1.12 1.03 0.88 1.02 1.04

Note that CI denotes confidence interval.

As presented in Table 4, the coefficients of determination R2 are 99.74% and 98.71% for the two
regression models respectively. This shows that both regression models can explain almost all variance
of the branch flows to their means. Table 4 shows the VIFs for the regressors of both regression models
are all very small, well below 3, which means that multicollinearity has little effect on the regression
models and there is no overfit issue.

Table 4. Results of Regression Analysis.

Regression
Model R2 VIF

θijbij (Vi−Vj)gij Vibpi θijgij (Vi−Vj)bij

P 99.74% 1.05 1.05 N/A NA NA
Q 98.71% NA NA 1.06 1.20 1.16

Table 5 shows that the residual mean of the regression model Q is about five times higher than
that of the regression model P. This indicates the proposed DLAC model is more accurate for branch
active power than branch reactive power. Table 6 shows the ANOVA analysis for regression model P,
which are used for testing the significance of regression. As the last column indicates, the possibility of
the two regressors being insignificance to the response is negligible. In other words, both the terms(
Vi −V j

)
gi j and θi jbi j are necessary in regression model P. This implies that DC power flow models

with only one term θi jbi j has obvious room for accuracy improvement. This is consistent with the
comparison between Tables 1 and 7. The active power solutions obtained from the LAC and DLAC are
very similar, but they are 20% more accurate as compared to the solution obtained with the DC and
DDC models. Figure 3 shows the scatter plot for hour 1 case, which indicates the fitted branch active
power flows of the proposed DLAC model, are closely in line with the solutions obtained from the full
AC model.

Table 5. Statistical results of Multiple Types of Residuals.

Regression
Model

e d t

Mean Variance Mean Variance Mean Variance

P 0.0020 0.0052 0.027 1.00 0.028 1.05
Q 0.0095 0.0024 0.19 0.96 0.19 1.01

Table 6. Analysis of Variance for Response Variable P.

Df Sum Sq Mean Sq F Value Pr (>F)

θi jbi j 1 281.5 281.5 54167 <2.2e-16(
Vi −V j

)
gi j 1 4227.1 4227.1 813356 <2.2e-16

Residuals 2299 11.9 0.0052 NA NA
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Tables 7–9, show the statistical results of branch active power, reactive power and bus voltage
obtained with DLAC and LAC models on hour 1 case respectively. It is observed that (i) the proposed
DLAC model can improve branch reactive power accuracy by 34.5% on branches with flows exceeding
10 MVA and (ii) improve voltage solution by 35.0% against the regular LAC model. As shown in
Tables 10–12, very similar observations are made from the results by applying both models to hour 2
case. Thus, it is concluded that the proposed DLAC model can significantly improve reactive power
accuracy against the regular LAC model, and the active power derived from the LAC/DLAC model is
more accurate than the DC/DDC model.

Table 7. Results of Active Power with DLAC and LAC for Hour 1 Case.

Tolerance in MW for Pij

1 5 10 50

# of branches 2093 1973 1746 841

Pi j
εLAC 6.93% 5.37% 4.43% 3.19%
εDLAC 7.00% 5.40% 4.46% 3.20%

θi j

εLAC 18.3% 14.4% 12.3% 11.3%
εDLAC 12.2% 8.73% 6.51% 4.71%

ηDLAC,LAC 33.6% 39.2% 46.9% 58.5%

Table 8. Results of Reactive Power with DLAC and LAC for Hour 1 Case.

Tolerance in MVAr for Qij

1 5 10 50

# of branches 3860 2755 2013 366

Qi j

εLAC 64.1% 44.7% 36.0% 32.6%
εDLAC 42.2% 29.5% 23.6% 22.4%

ηDLAC,LAC 34.2% 34.0% 34.5% 31.3%
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Table 9. Results of Voltage with the DLAC and LAC Models for Hour 1 Case.

Voltage Level/KV

All ≥200 (200, 100] (100, 20] <20

# of buses 1877 64 1205 192 416

Vi
LAC 0.0161 0.0171 0.0188 0.0159 0.0080

DLAC 0.0105 0.0094 0.0124 0.0106 0.0050

Vi%
εLAC 1.54% 1.61% 1.81% 1.54% 0.77%
εDLAC 1.00% 0.89% 1.19% 1.03% 0.48%

ηDLAC,LAC 35.0% 44.7% 34.3% 33.1% 37.7%

Table 10. Results of Active Power with DLAC and LAC for Hour 2 Case.

Tolerance for Pij in MW

1 5 10 50

# of branches 2082 1954 1722 815

Pi j
εLAC 5.08% 3.98% 3.50% 2.53%
εDLAC 5.10% 4.01% 3.51% 2.53%

θi j
εLAC 16.4% 14.0% 10.8% 10.2%
εDLAC 10.4% 8.42% 5.55% 4.40%

ηDLAC,LAC 36.5% 40.0% 48.7% 57.0%

Table 11. Results of Reactive Power with DLAC and LAC for Hour 2 Case.

Tolerance for Qij in MVAr

1 5 10 50

# of branches 3811 2747 1996 333

Qi j
εLAC 59.4% 42.6% 35.4% 32.0%
εDLAC 37.9% 27.7% 22.8% 21.1%

ηDLAC,LAC 36.2% 35.0% 35.5% 34.1%

Table 12. Results of Voltage with DLAC and LAC for Hour 2 Case.

Voltage Level/KV

All ≥200 (200, 100] (100, 20] <20

# of buses 1877 64 1205 192 416

Vi
LAC 0.0153 0.0166 0.0180 0.0152 0.0076

DLAC 0.0097 0.0089 0.0115 0.0099 0.0045

Vi%
εLAC 1.47% 1.56% 1.72% 1.47% 0.73%
εDLAC 0.93% 0.84% 1.10% 0.96% 0.44%

ηDLAC,LAC 36.8% 46.2% 36.1% 34.7% 39.7%

It is important to analyze how much improvement the proposed DLAC model can achieve over
the conventional LAC model in terms of branch complex power flow that is used to monitor line
loading level against line thermal capacity limit. To avoid the effects of small amount of branch
flows, the following analysis focuses on branches that have flows of at least 10 MVA. With this filter,
the statistics for hour 1 case and hour 2 case are presented in Table 13. For hour 1 case, the average
branch flow error is 5.62% for LAC while it is only 4.65% for DLAC, which corresponds to 17.2% model
improvement of DLAC over LAC. For hour 2 case, the average line flow error is 4.77% for LAC while
it is 3.85% for DLAC, which corresponds to 19.1% improvement. The sum of absolute deviation in
branch complex power flow (SADCP) is also compared for different models. For the traditional LAC
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model on hour 1 case, the SADCP is 8781 MVA over 1876 branches with an average flow error of
4.68 MVA per branch. With DLAC, the SADCP drops by 16.0% down to 7379 MVA, which correspond
to 3.93 MVA per line on average. For hour 2 case, the SADCP is 7238 MVA over 1864 branches with an
average flow error of 3.88 MVA per branch using LAC; with DLAC, the SADCP drops by 16.4% down
to 6047 MVA, which corresponds to 3.24 MVA per line. Thus, it is concluded that the proposed DLAC
model can substantially reduce the branch complex power flow error.

Table 13. Statistical Results of Branch Complex Power with Full AC Models with a Tolerance of 10 MVA
for Hour 1 Case and Hour 2 Case.

Min Max Mean Median s.d. # of Branches

Hour 1 case 10.0 1189.7 89.9 49.5 135.9 1876
Hour 2 case 10.0 1174.9 86.9 48.0 132.3 1864

Two power flow simulations based on the regular LAC model and the proposed DLAC model
are conducted on hour 1 case. As compared to the full AC model, the branch complex flow errors
in percent for both LAC and DLAC are calculated and presented in Figure 4 where branches with
less than 10 MVA flow and branches with flow errors less than 5% for LAC model are removed in
order to clearly show the performance difference between the regular LAC model and the proposed
DLAC model. There are 683 branches in Figure 4 and they are ordered based on flow errors of the
proposed DLAC model. It is clearly observed from Figure 4 that the complex power flow errors of
DLAC are well lower than LAC for most branches. To verify the proposed DLAC model on a different
system operating condition, similar simulations are performed on hour 2 case representing the system
scenario of the next following hour and the results are shown in Figure 5. Very similar observations
can be made from Figure 5, which validates the proposed DLAC model. It is concluded the proposed
DLAC model can substantially improve the regular LAC model with regression analysis.Energies 2020, 13, 3308 13 of 17 
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Energies 2020, 13, 3308 14 of 17

Energies 2020, 13, 3308 13 of 17 

 

 

Figure 4. Branch complex power flow errors of LAC model and DLAC model for hour 1 case. 

 

Figure 5. Branch complex power flow errors of LAC model and DLAC model for hour 2 case. 

With above analysis, it is demonstrated that the proposed data-driven linearized AC power flow 

model can largely enhance the system reactive power profile and voltage profile for the training case 

on which regression analysis is performed and the case of the very next following hour. Moreover, 

the proposed DLAC model and the traditional LAC model are tested on 70 more consecutive cases. 

The results are shown in Tables 14 and 15. 

Table 14. Improvement of Voltage Magnitude for 72 Consecutive Cases. 

Hour LAC DLAC 𝜼𝑫𝑳𝑨𝑪,𝑳𝑨𝑪 Hour LAC DLAC 𝜼𝑫𝑳𝑨𝑪,𝑳𝑨𝑪 Hour LAC DLAC 𝜼𝑫𝑳𝑨𝑪,𝑳𝑨𝑪 

1 0.0161 0.0105 35.0% 25 0.0169 0.0115 31.8% 49 0.0154 0.0098 36.0% 

2 0.0153 0.0097 36.8% 26 0.0158 0.0104 34.3% 50 0.0145 0.0089 38.5% 

3 0.0144 0.0085 41.2% 27 0.0137 0.0079 42.0% 51 0.0136 0.0076 43.8% 

4 0.0116 0.0055 52.2% 28 0.0116 0.0056 51.4% 52 0.0116 0.0054 53.1% 

5 0.0095 0.0034 63.8% 29 0.0102 0.0042 58.6% 53 0.0101 0.0039 61.3% 

6 0.0089 0.0029 66.9% 30 0.0092 0.0034 63.6% 54 0.0093 0.0032 65.5% 

7 0.0091 0.0032 65.2% 31 0.0091 0.0033 63.9% 55 0.0090 0.0030 66.7% 

8 0.0090 0.0031 65.8% 32 0.0090 0.0031 65.2% 56 0.0088 0.0028 68.6% 

9 0.0090 0.0029 67.3% 33 0.0089 0.0029 67.4% 57 0.0089 0.0027 69.8% 

10 0.0088 0.0027 68.7% 34 0.0090 0.0030 66.5% 58 0.0090 0.0028 68.5% 

11 0.0091 0.0030 67.1% 35 0.0092 0.0031 65.9% 59 0.0090 0.0027 69.6% 

12 0.0105 0.0043 58.9% 36 0.0100 0.0039 61.1% 60 0.0094 0.0031 67.1% 

Figure 5. Branch complex power flow errors of LAC model and DLAC model for hour 2 case.

With above analysis, it is demonstrated that the proposed data-driven linearized AC power flow
model can largely enhance the system reactive power profile and voltage profile for the training case
on which regression analysis is performed and the case of the very next following hour. Moreover,
the proposed DLAC model and the traditional LAC model are tested on 70 more consecutive cases.
The results are shown in Tables 14 and 15.

Table 14. Improvement of Voltage Magnitude for 72 Consecutive Cases.

Hour LAC DLAC ηDLAC,LAC Hour LAC DLAC ηDLAC,LAC Hour LAC DLAC ηDLAC,LAC

1 0.0161 0.0105 35.0% 25 0.0169 0.0115 31.8% 49 0.0154 0.0098 36.0%
2 0.0153 0.0097 36.8% 26 0.0158 0.0104 34.3% 50 0.0145 0.0089 38.5%
3 0.0144 0.0085 41.2% 27 0.0137 0.0079 42.0% 51 0.0136 0.0076 43.8%
4 0.0116 0.0055 52.2% 28 0.0116 0.0056 51.4% 52 0.0116 0.0054 53.1%
5 0.0095 0.0034 63.8% 29 0.0102 0.0042 58.6% 53 0.0101 0.0039 61.3%
6 0.0089 0.0029 66.9% 30 0.0092 0.0034 63.6% 54 0.0093 0.0032 65.5%
7 0.0091 0.0032 65.2% 31 0.0091 0.0033 63.9% 55 0.0090 0.0030 66.7%
8 0.0090 0.0031 65.8% 32 0.0090 0.0031 65.2% 56 0.0088 0.0028 68.6%
9 0.0090 0.0029 67.3% 33 0.0089 0.0029 67.4% 57 0.0089 0.0027 69.8%

10 0.0088 0.0027 68.7% 34 0.0090 0.0030 66.5% 58 0.0090 0.0028 68.5%
11 0.0091 0.0030 67.1% 35 0.0092 0.0031 65.9% 59 0.0090 0.0027 69.6%
12 0.0105 0.0043 58.9% 36 0.0100 0.0039 61.1% 60 0.0094 0.0031 67.1%
13 0.0106 0.0044 58.2% 37 0.0105 0.0044 58.4% 61 0.0101 0.0038 62.7%
14 0.0117 0.0056 52.4% 38 0.0110 0.0050 54.8% 62 0.0108 0.0045 58.3%
15 0.0131 0.0070 46.3% 39 0.0119 0.0060 50.1% 63 0.0118 0.0055 52.9%
16 0.0144 0.0085 41.1% 40 0.0135 0.0076 43.4% 64 0.0144 0.0085 41.2%
17 0.0159 0.0101 36.9% 41 0.0145 0.0087 40.1% 65 0.0138 0.0078 43.7%
18 0.0163 0.0108 34.1% 42 0.0150 0.0095 37.1% 66 0.0148 0.0089 39.8%
19 0.0160 0.0107 33.0% 43 0.0157 0.0103 34.2% 67 0.0147 0.0091 38.1%
20 0.0185 0.0132 28.8% 44 0.0167 0.0114 31.8% 68 0.0150 0.0095 36.7%
21 0.0177 0.0125 29.4% 45 0.0174 0.0122 29.9% 69 0.0167 0.0112 33.1%
22 0.0179 0.0127 29.0% 46 0.0175 0.0123 29.6% 70 0.0171 0.0116 32.1%
23 0.0173 0.0121 30.3% 47 0.0165 0.0112 32.1% 71 0.0165 0.0110 33.4%
24 0.0160 0.0107 33.1% 48 0.0151 0.0097 35.6% 72 0.0159 0.0102 35.8%
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Table 15. Improvement of Reactive Power for Branches Exceeding 10 MVAr for 72 Consecutive Cases.

Hour LAC DLAC ηDLAC,LAC Hour LAC DLAC ηDLAC,LAC Hour LAC DLAC ηDLAC,LAC

1 36.0% 23.6% 34.5% 25 39.6% 27.0% 31.9% 49 37.0% 23.3% 37.2%
2 35.4% 22.8% 35.5% 26 39.6% 25.9% 34.6% 50 33.1% 20.7% 37.3%
3 33.6% 20.9% 37.8% 27 32.7% 19.7% 39.8% 51 31.3% 18.8% 40.1%
4 28.8% 16.8% 41.9% 28 27.0% 15.8% 41.6% 52 28.8% 16.7% 42.1%
5 22.2% 12.5% 43.6% 29 25.1% 14.2% 43.5% 53 25.6% 14.1% 44.8%
6 22.1% 12.2% 45.1% 30 23.1% 12.9% 44.0% 54 23.3% 13.0% 44.2%
7 22.5% 12.3% 45.4% 31 22.7% 12.9% 43.1% 55 22.7% 12.9% 43.4%
8 22.9% 12.6% 45.1% 32 22.1% 12.7% 42.6% 56 21.9% 12.3% 44.0%
9 23.0% 12.6% 45.0% 33 21.5% 12.2% 43.2% 57 21.2% 11.7% 44.8%

10 21.9% 12.4% 43.6% 34 21.7% 12.5% 42.3% 58 21.9% 12.3% 43.9%
11 22.9% 12.7% 44.6% 35 22.2% 12.6% 43.5% 59 21.7% 12.4% 42.9%
12 27.0% 14.9% 44.7% 36 23.4% 13.2% 43.5% 60 23.1% 13.0% 44.0%
13 28.2% 15.8% 43.8% 37 25.3% 14.3% 43.5% 61 23.5% 13.2% 43.8%
14 30.7% 18.0% 41.5% 38 26.6% 15.01% 43.5% 62 25.9% 14.5% 44.0%
15 35.1% 21.7% 38.1% 39 31.5% 18.7% 40.8% 63 27.3% 16.3% 40.2%
16 36.1% 22.5% 37.8% 40 35.4% 21.5% 39.3% 64 36.3% 22.6% 37.7%
17 38.4% 25.1% 34.6% 41 36.5% 22.6% 38.1% 65 34.4% 20.6% 40.2%
18 40.2% 26.5% 34.0% 42 35.9% 23.3% 35.1% 66 34.4% 21.6% 37.2%
19 39.7% 26.6% 33.0% 43 39.7% 26.0% 34.5% 67 35.8% 23.0% 35.7%
20 46.6% 32.3% 30.7% 44 39.8% 26.9% 32.5% 68 37.6% 23.2% 38.2%
21 44.1% 30.3% 31.3% 45 43.7% 30.1% 31.1% 69 38.9% 25.9% 33.2%
22 42.0% 29.1% 30.9% 46 42.1% 28.5% 32.3% 70 40.1% 27.2% 32.2%
23 40.8% 27.9% 31.5% 47 38.1% 25.7% 32.6% 71 38.9% 25.9% 33.3%
24 39.1% 26.0% 33.6% 48 36.9% 23.5% 36.5% 72 40.5% 25.8% 36.3%

The average voltage improvement with the proposed DLAC model against the regular LAC
model over all 72 cases has a mean of 48.7% and a standard deviation of 14.2%; the average branch
reactive power improvement with DLAC against LAC is 39.8% with a standard deviation of 4.7%.
This demonstrates the proposed DLAC power flow model significantly improve the regular LAC
model. The average error of voltage solutions obtained from DLAC is only 0.67% among 72 system
scenarios. The standard deviation of voltage error is 0.33%, which indicates the proposed DLAC model
is stable and robust over different system conditions. For branch reactive power, the average error
is 19.4% with a standard deviation of 6%, and although reactive power solution is not as accurate
as voltage, the proposed DLAC can provide reactive power information within an acceptable range,
which shows its superiority over the traditional DC power flow model.

It is worth noting that determining regressors’ coefficients with linear regression is fast and the
regression model can be easily retrained with the latest system operating data. However, frequent model
retraining may not be necessary unless the system voltage profile and operating points have significantly
deviated from the previous training data. This feature can enable the proposed DLAC model to be
integrated in several power system applications, such as economic dispatch, unit commitment, and
grid expansion planning.

6. Conclusions

Due to nonlinearity and nonconvexity of the AC power flow model, the simplified DC model is
widely used in both academic and industry. However, the DC power flow model does not include
any information about reactive power and voltage profile. To maintain linearity while capturing
reactive power and voltage, this work first introduced a regular LAC model and then proposed a
data-driven enhanced LAC model. The proposed DLAC model can improve the regular LAC model
by tuning the coefficients with the regression analysis technology. Both regular LAC and enhanced
DLAC model can substantially reduce the error associated with calculated branch active power flows
against the traditional DC power flow model. Moreover, as compared with the regular LAC model, the
proposed DLAC model can obtain a more accurate voltage profile and improve reactive power flow
solutions. The reason why DLAC model is more accurate is that the enhanced DLAC model can take
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recent/historical system conditions into account. It is worth noting that the proposed DLAC model can
be easily incorporated in various power system applications such as day-ahead unit commitment or
real-time economic dispatch, which can substantially improve their performance.

Case studies on the large-scale practical TVA system demonstrate the performance and effectiveness
of the proposed DLAC model. Numerical simulations show that the proposed DLAC model can
substantially improve the reactive power and voltage solutions against the regular LAC model. The
simulation results also show that there is no overfitting or multicollinearity issue for the proposed
DLAC model, which indicates that the proposed DLAC model is robust.
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