Abstract
Traditional long-term microgrid planning models assume constant power charging for battery energy storage systems (BESS), overlooking efficiency losses that occur toward the end of charge due to rising internal resistance. While this issue can be mitigated at the cell level using constant current–constant voltage (CCCV) charging, it is impractical at the pack level in large-scale systems. However, battery management systems and inverter controls can emulate this effect by tapering charging power at high state-of-charge (SOC) levels, trading off charging speed for improved efficiency and reduced thermal stress. Ignoring this behavior in planning models can lead to undersized batteries and potential reliability issues. This paper proposes a tractable and scalable approach to approximate CCCV behavior using SOC-dependent tapered charging power (TCP) constraints. A MATLAB-based proof of concept demonstrates the energy delivery and efficiency benefits of tapering. The method is integrated into a long-term planning framework and evaluated under a synthetic load and solar profile. Results show tapering significantly affects BESS sizing, cost, and reliability under dynamic operating conditions that demand fast charging. These findings highlight tapering as a critical modeling factor for accurately capturing BESS performance in long-term microgrid planning.
Index Terms
Battery energy storage systems, CCCV charging, tapering, microgrid planning, long-term optimization.
Cite this paper:
Hassan Zahid Butt and Xingpeng Li, “Approximating CCCV charging using SOC-dependent tapered charging power constraints in long-term microgrid planning”, arXiv, 2025.